Saturday, May 26, 2012

"Blue Sway"


Jack McCoy has been capturing the surfing vision in a truly unique way.
Using a high powered underwater jet ski, the filmmaker found that he was able to travel behind a wave, creating underwater images that have never been seen before.
Over the past couple of years, McCoy set out to capture footage for his surf film, A Deeper Shade of Blue.
During the editing process, McCoy put one of his surfing sequences to a song off McCartney's The Fireman album.
A mutual friend, Chris Thomas, saw the footage while visiting McCoy in Australia, and when he returned to the UK he gave McCartney a copy of the sequence.
"Paul was pretty stoked with what I'd created. He immediately thought my images might be suitable to go with his unreleased song "Blue Sway." said McCoy.
McCoy spent the next six weeks creating the music video, while also working full days on making A Deeper Shade of Blue.
McCoy compiled and edited footage that he filmed off Tahiti's Teahupoo reef to create what became the "Blue Sway" video.
"When I saw Jack McCoy's underwater surfing footage put to the soundtrack of "Blue Sway" I was blown away," said McCartney.
"Blue Sway" won 'Best Music Video' at NYC BE FILM Short Festival this past May, and the video will be featured as part of Surfrider Foundation's summer PSA campaign.

Friday, May 25, 2012

Les cartes nautiques françaises visualisables sur le site de Voiles & Voiliers


Dans le cadre de la promotion de son activité B2B de mise à disposition de couches cartographiques nautiques pour des applications de webmapping proposés par des tiers, le GeoGarage a mis en oeuvre un partenariat avec le magazine Voiles et Voiliers pour proposer sur son site web un visualisateur en libre accés des cartes nautiques françaises provenant du SHOM.

Suite à sa publication sur le site V&V hier jeudi 24 mai, afin de répondre aux différentes questions et aux commentaires divers parus en ligne sur des forums nautiques ou directement sur le compte Facebook de V&V, voici quelques premiers éléments de réponse aux questionnements posés.


Toutes les cartes du catalogue SHOM ne sont pas présentes sur le visualisateur :

A ce jour, toutes les cartes raster disponibles au format geoTIFF en Mercator/WGS84 nous ont été fournies par le SHOM (soit 370 cartes équivalent papier / 692 en incluant les sous-cartes -ou cartouches-).
Ainsi certaines cartes en projection locale (notamment pour des zones géographiques hors Métropole) sont en cours de traitement au sein du département Cartographie du SHOM.
Ces cartes seront prochainement disponibles et figureront donc à terme sur le viewer.

Ainsi, sur les 1097 cartes du catalogue SHOM, environ 745 cartes sont concernées par notre licence (contrat n°4/2012). 
Note : les cartes du catalogue SHOM ayant un copyright partagé avec d'autres services hydrographiques voisins ne sont pour le moment pas impliquées par cette nouvelle licence avec le SHOM.

Mises à jour :
Le service venant juste de se mettre en place, il est prévu une mise à jour annuelle dans un premier temps.
De même, certaines nouvelles références de carte papier (ex.: 14/05/2012 cartographie du bassin d'Arcachon : la carte 6766 laisse la place à la carte 7428) récentes ne sont pas encore intégrées dans la plateforme GeoGarage.
(voir mise en place du service au sein du SHOM ci-dessous)


Quelles différences avec l'affichage des cartes marines sur le GeoPortail national ?

SCAN Littoral est visible en visualisation (à partir du 1 : 64 000) sur le Géoportail en cliquant sur "carte littorale" dans la rubrique "Littoral"

Le GéoPortail national propose déjà un affichage de cartes nautiques en collaboration avec le SHOM.
En fait il s'agit du produit SCAN Littoral (mise à jour juin), coédité par l'IGN et le SHOM qui le diffuse sous licences.

Le SCAN Littoral est une collection d'images cartographiques numériques continues du littoral en couleur, obtenue par assemblage de données raster géoréférencées et dallées (10 x 10 km) :
  • des cartes marines du Service Hydrographique et Océanographique de la Marine (SHOM) au 1 : 50 000,
  •  et des cartes terrestres de l'Institut Géographique National (IGN) au 1 : 25 000.
Notes :

  • l'affichage n'est pas réalisé en 'projection marine' (Mercator) comme sur les cartes papier mais en plate-carrée
  • de fait des sources de cartes utilisées (voir ci-dessous) pour sa composition, la plage des échelles de visualisation est limitée : ainsi pour la plupart du temps, c'est la même carte (affichée au 1:64 000) qui est zoomée jusqu'au 1:2 000, soit 5 niveaux d'échelles en overzoom.
pour la partie mer : Le fond cartographique de la partie mer est l'image cartographique des cartes marines imprimées, délimitée par le cadre et le trait de côte. Pour le littoral métropolitain, les cartes retenues correspondent en majorité à la gamme d'échelle du 1 : 50 000. Elles sont complétées dans les estuaires, les baies ou les golfes par la gamme d'échelle au 1 : 20 000 et le long du littoral Aquitain par deux cartes de l'ordre du 1 : 150 000.
Pour la Réunion, la Martinique et la Guadeloupe, les cartes à l'échelle du 1 : 50 000 seront exploitées. Pour la Guyane les cartes à l'échelle du 1 : 300 000 seront complétées par les cartes détaillées au 1 : 50 000.

pour la partie terrestre : Le fond cartographique de la partie terrestre est l'image de la carte IGN (données raster issues du 1 : 25 000) délimitée par le même trait de côte, à l'exception de la toponymie côtière qui pourra figurer en mer.
pour le trait de côte : Le trait de côte (laisse des plus hautes mers par marée de coefficient 120 et dans des conditions météorologiques normales) provient de la base de données HistoLitt. Il a été établi en commun par le SHOM et l'IGN. Il provient d'une numérisation des cartes du SHOM à la plus grande échelle pour la zone concernée (du 1 : 5 000 au 1 : 50 000 voire 1 : 150 000), actualisé avec la BD ORTHO de l'IGN. C'est désormais la ligne de raccord de référence entre les données terrestres et les données marines de nos référentiels.

SHOM et Open Data :

Le partenariat avec Voiles et Voiliers est issu d'une licence commerciale d'exploitation des données numériques du SHOM pour des applications online web et mobile de la plateforme de cartes nautiques GeoGarage.
Ainsi, l'affichage public ne résulte en rien d'une ouverture des données publiques issu du mouvement Données Ouvertes (in English Open Data) mais rentre uniquement dans le cadre d'une licence commerciale d'utilisation de données du SHOM (comme d'autres Services Hydrographiques internationaux : UKHO, CHS, AHS...)

Le SHOM, Service hydrographique national, passé en 2007 sous un statut d'EPA (Etablissement Public Administratif) qui lui confère un statut juridique propre, exerce les attributions de l'Etat en matière d'hydrographie générale au bénéfice de tous les usagers de la mer et de cartographie marine conformément aux obligations internationales de la France, définies notamment par la convention internationale SOLAS pour la sauvegarde de la vie humaine en mer et par la convention des Nations unies sur le droit de la mer.
Elles s'appliquent en assurant le recueil, l'archivage et la diffusion des informations officielles nécessaires à la navigation maritime.
De plus, le SHOM participe au recueil et à la mise à disposition des données numériques nécessaires à la gestion intégrée des zones côtières et au développement durable ainsi qu'aux actions de l'Etat en matière de lutte contre les pollutions maritimes.
Il participe aussi à la mise en place de réseaux d'alerte pour la prévention des risques et des catastrophes (via son réseau d'observation du niveau de la mer -RONIM-(mise à jour juin)).
Aux côtés de nombreux partenaires, il soutient par ses moyens et son expertise la modélisation numérique de l'océan mondial, et contribue à son extension vers le domaine côtier (projet Litto3D).

De part les moyens considérables nécessaires à l'acquisition des données et la surface à couvrir (le SHOM utilise 5 navires spécialisés dont 2 avec l'Ifremer pour s'occuper d'une zone de 11 millions de km2) pour un budget annuel de 62,4 M d'Euros en 2011 (voir : Diginav).

Ainsi depuis plusieurs années le SHOM a entrepris un grand projet de transformation vers le numérique (voir produits) en rationalisant ses processus de production tout en assurant une continuité de service pour l'ensemble de sa documentation papier.

En application de la directive européenne INSPIRE (2007/2/CE) du 14 mars 2007 qui a pour objectif d'assurer l'interopérabilité de l'information géographique en Europe, le SHOM met en place des services en ligne de consultation de données basés sur les standards de l'OGC (WMS, WMTS, WFS et WCS).

Les couches thématiques actuellement accessibles sont les suivantes :
  • références altimétriques maritimes (RAM)
  • délimitations maritimes des espaces français
  • dalles bathymétriques métropole (MNT)
  • trait de côte Histolitt
  • nature de fond : données surfaciques
  • nature de fond : plomb suiffé (données ponctuelles)
  • toponymie marine métropole
  • câbles sous-marins
Les données de base issues des marégraphes sont visualisables, accessibles et mises à disposition gratuitement en temps réel et en temps différé sur le site Internet mis en œuvre par le SHOM
(REFMAR / diffusion des données)

Ainsi si l'on considère que l'open data concerne les informations publiques brutes qui ont vocation à être librement accessibles et exploitables pour tous, sans restriction de licence, les données à valeur ajoutée comme les données cartographiques nautiques, issues d'un travail à valeur ajoutée de mise en forme, ne sont pas alors concernées.

Depuis les années 90, le SHOM propose des licences d'utilisation de leurs cartes à tous les fabricants de systèmes électroniques de cartographie marine ou aux développeurs de logiciels moyennant un systèmes de royalties.

Désormais, le SHOM permet aux organismes publics et aux sociétés commerciales d'exploiter ses données numériques (cartes raster au format geoTIFF et vecteur ENC au format s-57) pour des applications embarquées (logiciels de navigation), SIG ou Internet :

De même, l'acquisition des données de type Litto3D (RGL Référentiel Géographique du Littoral)  nécessitant des moyens divers et complexes a demandé l'appui de sociétés privées spécialisées (lasers aéroportés, sondages multifaisceaux, modélisation hydrodynamique) concerne de nombreux utilisateurs potentiels (protection du littoral, prévention des risques, aménagement du territoire côtier…) seront -très certainement- distribués par l'intermédiaire de licences payantes.

Ainsi les entreprises payent déjà pour utiliser et commercialiser des données publiques : cependant il est vrai que le ticket d'entrée nécessaire à l'obtention des données favorise les structures qui ont certains moyens financiers au détriment des TPE pour le développement de leur activité ou de porteurs de projets pour la création de nouveaux services ou usages innovants.
Ainsi le modèle Open Data cherche à encourager l'innovation par la distribution contributive des données.
C'est le seul modèle qui permet l'émergence de trés petits acteurs, en contraignant les oligopoles existants à sortir d'une logique de monopolisation des données pour adopter une logique de partage.
C'est la politique adoptée il y a quelques années pour les données cartographiques marines par les USA (NOAA) suivis par la Nouvelle-Zélande (Linz) puis le Brésil (DHN) et récemment l'Argentine (SHN).

En France, les institutions publiques (EPA tels que l'IGN ou Météo-France) ainsi que leurs équivalents européens, ont pour caractéristique de générer une partie de leur budget avec la revente de données ou de services.
Aujourd'hui, la situation critique des finances publiques en Europe ne permet pas d'augmenter la dotation budgétaire des différents Services Hydrographiques.
Poussée par leur Ministère de tutelle, la politique interne en matière de budget du SHOM conduit ce dernier à chercher de nouveaux financements en adoptant une politique tarifaire relativement accessible à une large majorité des demandeurs afin de lui permettre de poursuivre ses activités et d'assurer ses missions publiques.

Notes :
  • le chiffre d'affaires pour la documentation nautique était d'environ 2,9 M€ pour 2011
  • un faible niveau de revenus généré par les organismes publics : le montant total des redevances perçues en 2011 s'éléve à ~ 2 M€ (~1150 licences délivrées) pour un budget total de 68 M€ (moins de 3%) à comparer avec Météo France (39 M€ sur un budget total de 389 M€ et IGN 16M€ sur un budget total de 166 M€ soit environ 10%)
Ainsi en dépit de la faiblesse des revenus, les redevances d'accés aux données publiques peuvent faire obstacle à l'émergence de nouvelles activités économiques innovantes (via la création de valeur ajoutée dans l'usage des données) qui doivent nécessairement démontrer la viabilité de leur propre modèle économique.
Références SHOM :

Le visualisateur propose des services limités :

Le widget de carto V&V propose un affichage continu permettant de zoomer pour découvrir toutes les cartes du SHOM à toutes les échelles sur les différentes parties du globe sur une base de cartographie terrestre issue des données OpenStreetMap.

Un outil de positionnement Latitude/Longitude WGS84 permet à l'utilisateur de connaître la position précise de son clic souris sur la carte.


Limitations :

Avec le widget V&V,  il n'est pas possible de positionner des waypoints ou de préparer une route.
Pour cela, il est nécessaire de se diriger vers le Marine GeoGarage, le service de webmapping en ligne de la plateforme web et mobile GeoGarage.

Note : le viewer V&V et celui du Marine GeoGarage affichent exactement la même base de cartes du SHOM


Ainsi, pour un abonnement au service webmapping (9,9 €/mois), l'utilisateur :

  • a accés à toutes les cartes du SHOM, mais aussi de l'UKHO, du CHS canadien et de l'AHS australien (soit 2588 cartes, 4332 en incluant les sous-cartes)
  • peut afficher la cartographie du SHOM en superposition par rapport à l'imagerie aérienne et satellite de Google (avec possibilité de réglage de la transparence pour la couche carto nautique)
  • a la possibilité avec des outils spécifiques de préparer sa navigation et de la sauvegarder au format gpx pour l'utiliser sur son GPS ou sur son logiciel de navigation préféré.
  • peut sauvegarder sur les serveurs GeoGarage dans un compte personnel (in the Cloud) tous ses waypoints et routes précédemment saisis
  • peut partager la visualisation obtenue à l'écran via E-Mail, Facebook, Twitter via un lien (alias d'URL réduite) intégrant la position géographique, le niveau de zoom et le calque de cartes choisi ainsi que son niveau de transparence

Ratifying Law of the Sea urgent, says Clinton


From EpochTimes

The need for the United States to sign onto a maritime treaty is a matter of “utmost security and economic urgency,” Secretary of State Hillary Clinton told a Senate hearing Wednesday.

The U.N. Law of the Sea Treaty (LOST) has become the leading accord in dealing with international maritime disputes, offering guidelines on a range of issues—including free passage through world’s seaways, jurisdiction of ocean beds, and passage for underwater telecommunication cables.

Whether to join the international body has been a point of discussion in the U.S. Senate for over 20 years—but to date, the United States remains one of the few major countries that has not signed up. Currently, 160 nations, including Russia and China, are members.
Clinton said, “Twenty years ago, ten years ago, maybe even five years ago, joining the convention was important, but not urgent. That is no longer the case.”
The race for resources is a big contributor to the urgency.
The convention allows nations to claim economic sovereignty over their continental shelf to a distance of around 200 nautical miles from shore.
That would extend U.S. territory by at least one-and-a-half times the size of Texas, maybe more, Clinton said.


Before, oil and gas companies did not have the technology to drill in such areas
Yet, now that they do, without the treaty they do not have the legal certainty of jurisdiction.
Similarly, mining companies now have the technology to mine deep waters, beyond the continental jurisdiction, but without the mechanism the Treaty provides to ensure secure title, companies are hesitant to make expensive investments.
“As long as the United States is outside the convention, our companies are left with two bad choices: either take their deep-sea mining business to another country or give up on the idea,” Clinton said.
Arctic and Mining Concerns

Warming of the Arctic region has also opened opportunities in fishing, oil, and exploration, as well as shipping and tourism.
While Russia and other Arctic nations are using the treaty’s framework to capitalize on those opportunities, the United States is only one of seven Arctic nations not a LOST member, and it remains “on the outside looking in,” Clinton said.
Adding to the urgency is that LOST members are moving forward on a range of issues on which the United States has no input. Notably, a move by 40 countries to draw up rules related to the deep-sea mining of minerals is “of great interest to the United States and American industry,” Clinton said.
Clinton was referring to rare earth elements that are essential for the production of not only high-tech products like cellphones, computers, and flat-screen televisions, but also military equipment.
China presently has around 90 percent of available rare earth minerals, the Senate heard, a power it has shown that it will use strategically, like when it blocked supply to Japan in 2010 after a maritime dispute.
“While we are challenging China’s export restrictions on these critical materials, we also need American companies to develop other sources,” Clinton said.

30th Anniversary of the United Nations Convention of the Law of the Sea (1982-2012)

Security

Defense Secretary Leon Panetta and Army Gen. Martin E. Dempsey, chairman of the Joint Chiefs of Staff, added weight to Clinton’s testimony.
Dempsey said the treaty made concrete U.S. military rights, spelling out “navigational rights and freedoms,” while ensuring the right of “innocent” passage through foreign territorial seas. It also affirmed “the sovereign immunity of U.S. warships and other public vessels,” he said.
The U.S. Navy is the world’s largest and most capable, Dempsey said, but increasingly other nations are looking to restrict international seaways. “[LOST] gives us the framework to counter excessive claims by states seeking to illegally restrict movement of vessels and aircraft.”
“These are all rights and capabilities that we want and that we need,” he said.

A map showing waters disputed by China in the South China Sea. (UNCLOS and the CIA)

Dempsey was referring to threats by Iran to close the Straits of Hormuz—critical to the distribution of oil to the West—and China’s claims on large swathes of the South China Sea, a territory that penetrates far into the 200-mile continental shelf zone of other Southeast Asian countries.
Responding to criticism that the treaty undermines U.S. military power, Secretary Panetta told the hearing there is, “No question we have the strongest navy, but engaging in gunboat diplomacy will result in conflict and will jeopardize our national security.”
Panetta has consistently noted that global security is complex and challenging, and beyond the domain of any one single nation to resolve.
The Obama administration has made clear that its approach to defense strategy is to develop a rules-based international order, building on regional security partnerships.
“We are strong because we play by the rules, not because we go against those rules,” Panetta told the hearing.


The difficulty of being outside LOST is not only that the U.S. is unable to influence rule-making and rule interpretations within the body, but also that America appears hypocritical about rules-based decision-making, Panetta said.
They ask, “How can you assert that, when you are not even part of the convention? That is our concern,” he said.
Senate Republicans were not convinced by the administration’s high-level representation.
Senator Mike Lee (R-Utah) raised concerns that the treaty requires the U.S. to pay royalties on mining leases from deep-water mining and that the United States would be unable to control where those funds went.
Clinton said the benefits would far outweigh the cost, and explained that the United States had a permanent seat on the LOST council, once it became a signatory, which would enable America to determine where those funds went.
Sen. Jim DeMint (R-S.C.) believes the treaty would leave U.S. businesses vulnerable to environmental lawsuits, and suggested that the treaty was just another set of laws that rogue countries would ignore.


Sen. Kerry, who has supported signing the treaty, said the Senate would not push for a vote on the treaty before the general election, noting that the hearing was the first of a number to come that would address Senators’ concerns.

Links :
  • WashingtonTimes : Military leaders urge ratification of sea treaty
  • WSJ : Sea-Treaty vote put off till after U.S. November Election 

Thursday, May 24, 2012

Very long swim : 2 projects across Atlantic and Pacific oceans

Ben Lecomte will swim across the Pacific Ocean from Tokyo, Japan to San Francisco, Ca. as a symbol of motivation, inspiration and endurance in the hopes to inspire others to never give up and to face their fears, and overcome their struggles.any obstacles they face in life.



From TheLongestSwim

After a cross Atlantic swim, now the Pacific!

On September 25th 1998, Ben Lecomte became the first man to swim across the Atlantic Ocean. 73 days after he left Hyannis, MA, over 3,700 miles to the East, he stepped on the French shore of Quiberon.

Ben Lecomte dedicated his swim to his father, Pierre who passed away from cancer, and the purpose of the event was to raise funds and awareness for the cancer research.
"My battle was very different from the one faced by cancer patients, it was my decision and I could give up at anytime. But during my swim I better understood their suffering and the feeling of not knowing the outcome," said Ben.

During his journey, Ben swam around 8 hours per day beside the Falbala, a forty-foot sailboat.
When not swimming, he spent his time drifting on board with the two-crew members.
To protect him from sharks and other sea creatures, he used a shark POD (Protection Ocean Device) instead of a cage.
This high tech equipment creates a magnetic field in the water to keep sharks away.


During his journey, Ben encountered some very difficult weather.
At times, Ben would swim while waves reached over twelve feet high.
But the most challenging aspect of the journey was staying motivated.
"I found it very difficult to do the same thing over and over: looking at the same blue background, hearing the same noise, tasting the same strong salty water."
Whenever he thought about giving up, Ben would concentrate on why he began the adventure in the first place, and he would remember those happy times spent with his family in France.

When he finally reached the shores of Quiberon, France his first words were: "Never again."
But since then, his feelings have changed: "My passion is intact, I just focus on happy moments of my journey and I am ready to take on the Pacific," said Ben.
He plans to begin his new journey from Tokyo, Japan in the spring of 2012 and conclude it in San Francisco, California some 6 months and over 5 thousand miles later.

Ben knows what it will take to reach his goal, his Atlantic swim gives him an edge.
He wants to realize his endeavor with some of the same concepts as the ones followed in the Atlantic ocean but yet improve the logistic and do a stage swim (resuming his swim each morning where he stopped the day before).
The Pacific ocean is the largest, it will require a 50 foot long catamaran and a team of 5 on board.

By leaving from the eastern coast of Japan, he positions himself to catch early on the Kuroshio, the warm pacific current that flows from the West to the East.
Ben will follow the same daily routine, swimming approximately 8 hours, with Shark PODs positioned near him to increase his protection against great white sharks.

Also, the support boat will be fully equipped with computers and satellite phone to send and receive data.
This technology will provide the audience direct interaction with Ben and his crew.
Up to the minute print, audio and video information will be uploaded to the web site.
Some of which are: position, weather condition, the team and Ben’s health as well as mental status, and the last encountered ocean lives.

In the same spirit as the Atlantic swim, Ben dedicates his Pacific swim to the memory of his father who died of cancer, and in honor of people around the world that are struggling and in need of inspiration and motivation, whether that struggle is battling a disease, an economic or financial struggle, or something completely different, whatever it is, it’s a challenge in someone’s life and Ben is swimming for them.

His message is that we all share one common bond.
We all have struggled with something at least once in our lives and with determination, courage and the support of others, together, we can conquer anything.
Together, there is hope for the future.


Links : 

Wednesday, May 23, 2012

Netherlands NLHO update in the Marine GeoGarage


79 charts (227 including sub-charts -see list-) have been updated with 2012 material from the Netherlands Hydrographic Office.

Note : In accordance with SOLAS, nautical products must be kept up-to-date.
The Netherlands Hydrographic Office therefore publishes Notices to Mariners (corrections on Netherlands nautical charts, small craft charts and Nautical Publications / Week edition).

UK & misc. update in the Marine GeoGarage

Today 956 charts (1822 including sub-charts) are available in the 'UK & misc.' chart layer
regrouping charts for different countries :
  1. UK
  2. Argentina
  3. Belgium
  4. Netherlands
  5. Croatia
  6. Oman
  7. Portugal
  8. Spain
  9. Iceland
  10. South Africa
  11. Malta

646 charts for UK

9 charts for Argentina :

  • 226 International Chart Series, Antarctica - South Shetlands Islands, Deception Island.
  • 227 Church Point to Cape Longing including James Ross Island
  • 2505 Approaches to the Falkland Islands
  • 2517 North-Western Approaches to the Falkland Islands
  • 2519 South-Western Approaches to the Falkland Islands
  • 3213 Plans in Graham Land
  • 3560 Gerlache Strait Northern Part
  • 3566 Gerlache Strait Southern Part
  • 4207 Falkland Islands to Cabo Corrientes and Northeast Georgia Rise

27 charts for Belgium & Nederlands :

  • 99 Entrances to Rivers in Guyana and Suriname
  • 110 Westkapelle to Stellendam and Maasvlakte
  • 112 Terschellinger Gronden to Harlingen
  • 120 Westerschelde - Vlissingen to Baalhoek and Gent - Terneuzen Canal
  • 122 Approaches to Europoort and Hoek van Holland
  • 124 Noordzeekanaal including Ijmuiden, Zaandam and Amsterdam
  • 125 North Sea Netherlands - Approaches to Scheveningen and Ijmuiden
  • 126 North Sea, Netherlands, Approaches to Den Helder
  • 128 Westerschelde, Valkenisse to Wintam
  • 207 Hoek Van Holland to Vlaardingen
  • 208 Rotterdam, Nieuwe Maas and Oude Maas
  • 209 Krimpen a/d Lek to Moerdijk
  • 266 North Sea Offshore Charts Sheet 11
  • 572 Essequibo River to Corentyn River
  • 702 Nederlandse Antillen, Aruba and Curacao
  • 1187 Outer Silver Pit
  • 1408 North Sea, Harwich and Rotterdam to Cromer and Terschelling.
  • 1412 Caribbean Sea - Nederlandse Antillen, Ports in Aruba and Curacao
  • 1414 Bonaire
  • 1503 Outer Dowsing to Smiths Knoll including Indefatigable Banks.
  • 1504 Cromer to Orford Ness
  • 1546 Zeegat van Texel and Den Helder Roads
  • 1630 West Hinder and Outer Gabbard to Vlissingen and Scheveningen
  • 1631 DW Routes to Ijmuiden and Texel
  • 1632 DW Routes and Friesland Junction to Vlieland
  • 1874 North Sea, Westerschelde, Oostende to Westkapelle
  • 2047 Approaches to Anguilla

14 charts for Croatia :

  • 201 Rt Kamenjak to Novigrad
  • 202 Kvarner, Kvarneric and Velebitski Kanal
  • 269 Ploce and Split with Adjacent Harbours, Channels and Anchorages
  • 515 Zadar to Luka Mali Losinj
  • 683 Bar, Dubrovnik and Approaches and Peljeski Kanal
  • 1574 Otok Glavat to Ploce and Makarska
  • 1580 Otocic Veliki Skolj to Otocic Glavat
  • 1582 Approaches to Bar and Boka Kotorska
  • 1996 Ports in Rijecki Zaljev
  • 2711 Rogoznica to Zadar
  • 2712 Otok Susac to Split
  • 2719 Rt Marlera to Senj including Approaches to Rijeka
  • 2773 Sibenik, Pasmanski Kanal, Luka Telascica, Sedmovrace, Rijeka Krka
  • 2774 Otok Vis to Sibenik
6 charts for Oman :

  • 2851 Masirah to the Strait of Hormuz
  • 2854 Northern approaches to Masirah
  • 3171 Southern Approaches to the Strait of Hormuz
  • 3409 Plans in Iran, Oman and the United Arab Emirates
  • 3511 Wudam and Approaches
  • 3518 Ports and Anchorages on the North East Coast of Oman


124 charts for Spain & Portugal :


  • 73 Puerto de Huelva and Approaches
  • 83 Ports on the South Coast of Portugal
  • 85 Spain - south west coast, Rio Guadalquivir
  • 86 Bahia de Cadiz
  • 87 Cabo Finisterre to the Strait of Gibraltar
  • 88 Cadiz
  • 89 Cabo de Sao Vicente to Faro
  • 91 Cabo de Sao Vicente to the Strait of Gibraltar
  • 93 Cabo de Santa Maria to Cabo Trafalgar
  • 142 Strait of Gibraltar
  • 144 Mediterranean Sea, Gibraltar
  • 307 Angola, Cabeca da Cobra to Cabo Ledo
  • 308 Angola, Cabo Ledo to Lobito
  • 309 Lobito to Ponta Grossa
  • 312 Luanda to Baia dos Tigres
  • 366 Arquipelago de Cabo Verde
  • 369 Plans in the Arquipelago de Cabo Verde
  • 469 Alicante
  • 473 Approaches to Alicante
  • 518 Spain East Coast, Approaches to Valencia
  • 562 Mediterranean Sea, Spain - East Coast Valencia
  • 580 Al Hoceima, Melilla and Port Nador with Approaches
  • 659 Angola, Port of Soyo and Approaches NEW
  • 690 Cabo Delgado to Mikindani Bay
  • 886 Estrecho de la Bocayna and Approaches to Arrecife
  • 1094 Rias de Ferrol, Ares, Betanzos and La Coruna
  • 1096 Ribadeo
  • 1110 La Coruna and Approaches
  • 1111 Punta de la Estaca de Bares to Cabo Finisterre
  • 1113 Harbours on the North-West Coast of Spain
  • 1117 Puerto de Ferrol
  • 1118 Ria de Ferrol
  • 1122 Ports on the North Coast of Spain
  • 1133 Ports on the Western Part of the North Coast of Spain
  • 1142 Ria de Aviles
  • 1145 Spain - North Coast, Santander
  • 1150 Ports on the North Coast of Spain
  • 1153 Approaches to Gijon
  • 1154 Spain, north coast, Gijon
  • 1157 Pasaia (Pasajes) and Approaches
  • 1172 Puertos de Bermeo and Mundaka
  • 1173 Spain - North Coast, Bilbao
  • 1174 Approaches to Bilbao
  • 1180 Barcelona
  • 1189 Approaches to Cartagena
  • 1193 Spain - east coast, Tarragona
  • 1194 Cartagena
  • 1196 Approaches to Barcelona
  • 1197 Plans on the West Coast of Africa
  • 1215 Plans on the Coast of Angola
  • 1216 Baia dos Tigres
  • 1290 Cabo de San Lorenzo to Cabo Ortegal
  • 1291 Santona to Gijon
  • 1448 Gibraltar Bay
  • 1453 Gandia
  • 1455 Algeciras
  • 1460 Sagunto
  • 1514 Spain - East Coast, Castellon
  • 1515 Ports on the East Coast of Spain
  • 1589 Almeria
  • 1595 Ilhas do Principe, de Sao Tome and Isla Pagalu
  • 1684 Ilha da Madeira, Manchico and Canical
  • 1685 Nisis Venetico to Nisos Spetsai including the Channels between Akra Maleas and Kriti
  • 1689 Ports in the Arquipelago da Madeira
  • 1701 Cabo de San Antonio to Vilanova I la Geltru including Islas de Ibiza and Formentera
  • 1703 Mallorca and Menorca
  • 1704 Punta de la Bana to Islas Medas
  • 1724 Canal do Geba and Bissau
  • 1726 Approaches to Canal do Geba and Rio Cacheu
  • 1727 Bolama and Approaches
  • 1730 Spain - West Coast, Ria de Vigo
  • 1731 Vigo
  • 1732 Spain - West Coast, Ria de Pontevedra
  • 1733 Spain - West Coast, Marin and Pontevedra
  • 1734 Approaches to Ria de Arousa
  • 1740 Livingston Island, Bond Point to Brunow Bay including Juan Carlos 1 Base and Half Moon Island
  • 1755 Plans in Ria de Arousa
  • 1756 Ria de Muros
  • 1762 Vilagarcia de Arosa
  • 1764 Ria de Arousa
  • 1831 Arquipelago da Madeira
  • 1847 Santa Cruz de Tenerife
  • 1850 Approaches to Malaga
  • 1851 Malaga
  • 1854 Motril and Adra
  • 1856 Approaches to Puerto de La Luz (Las Palmas)
  • 1858 Approaches to Santa Cruz de Tenerife, Puerto de San Sebastian de la Gomera, Santa Cruz de la Palma and Approaches
  • 1869 Gran Canaria to Hierro
  • 1870 Lanzarote to Gran Canaria
  • 1895 Ilha de Sao Miguel
  • 1950 Arquipelago dos Acores
  • 1956 Arquipelago dos Acores Central Group
  • 1957 Harbours in the Arquipelago Dos Acores (Central Group)
  • 1959 Flores,Corvo and Santa Maria with Banco Das Formigas
  • 2742 Cueta
  • 2761 Menorca
  • 2762 Menorca, Mahon
  • 2831 Punta Salinas to Cabo de Formentor including Canal de Menorca
  • 2832 Punta Salinas to Punta Beca including Isla de Cabrera
  • 2834 Ibiza and Formentera
  • 2932 Cabo de Sao Sebastiao to Beira
  • 2934 Africa - east coast, Mozambique, Beira to Rio Zambeze
  • 2935 Quelimane to Ilha Epidendron
  • 3034 Approaches to Palma
  • 3035 Palma
  • 3220 Entrance to Rio Tejo including Baia de Cascais
  • 3221 Lisboa, Paco de Arcos to Terreiro do Trigo
  • 3222 Lisboa, Alcantara to Canal do Montijo
  • 3224 Approaches to Sines
  • 3227 Aveiro and Approaches
  • 3228 Approaches to Figueira da Foz
  • 3257 Viana do Castelo and Approaches
  • 3258 Approaches to Leixoes and Barra do Rio Douro
  • 3259 Approaches to Setubal
  • 3260 Carraca to Ilha do Cavalo
  • 3448 Plans in Angola
  • 3578 Eastern Approaches to the Strait of Gibraltar
  • 3633 Islas Sisargas to Montedor
  • 3634 Montedor to Cabo Mondego
  • 3635 Cabo Mondego to Cabo Espichel
  • 3636 Cabo Espichel to Cabo de Sao Vicente
  • 3764 Cabo Torinana to Punta Carreiro
  • 4114 Arquipelago dos Acores to Flemish Cap
  • 4115 Arquipelago dos Acores to the Arquipelago de Cabo Verde
  • Ilha de Madeira, Ponta Gorda de Sao Lourenco including the Port of Funchal


13 charts for Iceland :


  • 2733 Dyrholaey to Snaefellsjokull
  • 2734 Approaches to Reykjavik
  • 2735 Iceland - South West Coast, Reykjavik
  • 2897 Iceland
  • 2898 Vestfirdir
  • 2899 Iceland, Noth Coast, Horn to Rauoinupur
  • 2900 Iceland, North East Coast, Rauoinupur to Glettinganes
  • 2901 Iceland, East Coast, Glettinganes to Stokksnes
  • 2902 Stokksnes to Dyrholaey
  • 2955 Iceland, North Coast, Akureyri
  • 2956 Iceland, North Coast, Eyjafjordur
  • 2937 Hlada to Glettinganes
  • 2938 Reydarfjordur


47 charts for South Africa :


  • 578 Cape Columbine to Cape Seal
  • 632 Hollandsbird Island to Cape Columbine
  • 643 Durban Harbour
  • 1236 Saldanha Bay
  • 1769 Islands and Anchorages in the South Atlantic Ocean
  • 1806 Baia dos Tigres to Conception Bay
  • 1846 Table Bay Docks and Approaches
  • 1922 RSA - Simon's Bay
  • 2078 Port Nolloth to Island Point
  • 2086 East London to Port S Johns
  • 2087 Port St John's to Durban
  • 2088 Durban to Cape Vidal
  • 2095 Cape St Blaize to Port S. John's
  • 3793 Shixini Point to Port S Johns
  • 3794 Port S Johns to Port Shepstone
  • 3795 Port Shepstone to Cooper Light
  • 3797 Green Point to Tongaat Bluff
  • 3859 Cape Cross to Conception Bay
  • 3860 Mutzel Bay to Spencer Bay
  • 3861 Namibia, Approaches to Luderitz
  • 3869 Hottentot Point to Chamais Bay
  • 3870 Chamais Bay to Port Nolloth
  • 4132 Kunene River to Sand Table Hill
  • 4133 Sand Table Hill to Cape Cross
  • 4136 Harbours on the West Coasts of Namibia and South Africa
  • 4141 Island Point to Cape Deseada
  • 4142 Saldanha Bay Harbour
  • 4145 Approaches to Saldanha Bay
  • 4146 Cape Columbine to Table Bay
  • 4148 Approaches to Table Bay
  • 4150 Republic of South Africa, South West Coast, Table Bay to Valsbaai
  • 4151 Cape Deseada to Table Bay
  • 4152 Republic of South Africa, South West Coast, Table Bay to Cape Agulhas
  • 4153 Republic of South Africa, South Coast, Cape Agulhas to Cape St. Blaize
  • 4154 Mossel Bay
  • 4155 Cape St Blaize to Cape St Francis
  • 4156 South Africa, Cape St Francis to Great Fish Point
  • 4157 South Africa, Approaches to Port Elizabeth
  • 4158 Republic of South Africa - South Coast, Plans in Algoa Bay.
  • 4159 Great Fish Point to Mbashe Point
  • 4160 Ngqura Harbour
  • 4162 Approaches to East London
  • 4170 Approaches to Durban
  • 4172 Tugela River to Ponta do Ouro
  • 4173 Approaches to Richards Bay
  • 4174 Richards Bay Harbour
  • 4205 Agulhas Plateau to Discovery Seamounts


    5 charts for Malta :

    • 36 Marsaxlokk
    • 177 Valletta Harbours
    • 211 Plans in the Maltese Islands
    • 2537 Ghawdex (Gozo), Kemmuna (Comino) and the Northern Part of Malta
    • 2538 Malta

    65 international charts from NGA


    • 3 Chagos Archipelago
    • 82 Outer Approaches to Port Sudan
    • 100 Raas Caseyr to Suqutra
    • 255 Eastern Approaches to Jamaica
    • 256 Western Approaches to Jamaica
    • 260 Pedro Bank to the South Coast of Jamaica
    • 333 Offshore Installations in the Gulf of Suez
    • 334 North Atlantic Ocean, Bermuda
    • 386 Yadua Island to Yaqaga Island
    • 390 Bahamas, Grand Bahama Island, Approaches to Freeport
    • 398 Grand Bahama Island, Freeport Roads, Freeport Harbour
    • 457 Portland Bight
    • 462 The Cayman Islands
    • 486 Jamaica and the Pedro Bank
    • 501 South East Approaches to Trinidad
    • 666 Port Mombasa including Port Kilindini and Port Reitz
    • 700 Maiana to Marakei
    • 766 Ellice Islands
    • 868 Eastern and Western Approaches to The Narrows including Murray's Anchorage
    • 920 Chagos Archipelago, Diego Garcia
    • 928 Sulu Archipelago
    • 959 Colson Point to Belize City including Lighthouse Reef and Turneffe Islands
    • 1043 Saint Lucia to Grenada and Barbados
    • 1225 Gulf of Campeche
    • 1265 Approaches to Shatt Al 'Arab or Arvand Rud, Khawr Al Amaya and Khawr Al Kafka
    • 1450 Turks and Caicos Islands, Turks Island Passage and Mouchoir Passage
    • 1638 Plans in Northern Vanuatu
    • 2006 West Indies, Virgin Islands, Anegada to Saint Thomas
    • 2009 Sheet 2 From 23 deg 40 min North Latitude to Old Bahama Channel
    • 2065 Northern Antigua
    • 2133 Approaches to Suez Bay (Bahr el Qulzum)
    • 2373 Bahr el Qulzum (Suez Bay) to Ras Sheratib
    • 2374 Ra's Sharatib to Juzur Ashrafi
    • 2441 Jazireh-ye Tonb-e Bozorg to Jazireh-ye Forur
    • 2658 Outer Approaches to Mina` al Jeddah (Jiddah)
    • 2837 Strait of Hormuz to Qatar
    • 2847 Qatar to Shatt al `Arab
    • 2887 Dubai (Dubayy) and Jazireh-Ye Qeshm to Jazirat Halul
    • 2888 Jask to Dubayy and Jazireh-ye Qeshm
    • 2889 Dubayy to Jabal Az Zannah and Jazirat Das
    • 3043 Red Sea, Ports on the coast of Egypt.
    • 3102 Takoradi and Sekondi Bays
    • 3172 Strait of Hormuz
    • 3174 Western Approaches to the Strait of Hormuz
    • 3175 Jazirat al Hamra' to Dubai (Dubayy) and Jazireh-ye Sirri
    • 3179 UAE and Qatar, Jazirat Das to Ar Ru' Ays
    • 3310 Africa - east coast, Mafia Island to Pemba Island
    • 3361 Wasin Island to Malindi
    • 3432 Saltpond to Tema
    • 3493 Red Sea - Sudan, Bashayer Oil Terminals and Approaches.
    • 3519 Southern Approaches to Masirah
    • 3520 Khawr Kalba and Dawhat Diba to Gahha Shoal
    • 3522 Approaches to Masqat and Mina' al Fahl
    • 3530 Approaches to Berbera
    • 3709 Gulf of Oman, United Arab Emirates, Port of Fujairah (Fujayrah) and Offshore Terminals.
    • 3723 Gulf of Oman, United Arab Emirates, Approaches to Khawr Fakkan and Fujairah (Fujayrah).
    • 3775 Ra's Abu `Ali to Ra's as Saffaniyah
    • 3785 Mina' Raysut to Al Masirah
    • 3907 Bahama Islands and Hispaniola, Passages between Mayaguana Island and Turks and Caicos Islands.
    • 3908 Passages between Turks and Caicos Islands and Dominican Republic
    • 3910 Little Bahama Bank including North West Providence Channel
    • 3912 Bahamas, North East Providence Channel and Tongue of the Ocean
    • 3913 Bahamas, Crooked Island Passage and Exuma Sound
    • 3914 Turks and Caicos Islands and Bahamas, Caicos Passage and Mayaguana Passage
    • 3951 Sir Bani Yas to Khawr al `Udayd


    Don't forget to visit the UKHO Notices to Mariners : NTM for 2012

    So today, for a cost of 9.9 € / month ('Premium Charts' subscription), you can have access to 2588 additional updated charts (4332 including sub-charts) coming from 3 international Hydrographic Services (UKHO, CHS, AHS and France).

NZ Linz update in the Marine GeoGarage


6 charts have been updated in the Marine GeoGarage
(Linz March & April update published April 11 / May 4, 2012)

  • NZ45 Cape Egmont to Rangitikei River
  • NZ61 Karamea River to Stephens Island
  • NZ463 Approaches to Wellington
  • NZ6321 Lyttelton Harbour / Whakaraupo : Port of Lyttelton
  • NZ6324 Akaroa Harbour
  • NZ14638 Fiji to Kermadec Islands including Tongatapu

Today NZ Linz charts (178 charts / 340 including sub-charts) are displayed in the Marine GeoGarage.

Note :  LINZ produces official nautical charts to aid safe navigation in New    Zealand waters and certain areas of Antarctica and the South-West    Pacific.

Using charts safely involves keeping them up-to-date using Notices to Mariners

Brazil DHN update in the Marine GeoGarage


21 charts have been added and 17 have been updated 
(DHN update March 9st, 2012 / April 10/11th 2012)

  • 1 COSTA E ILHAS AO LARGO
  • 1420 PROXIMIDADES DE BARRA DO RIACHO
  • 23200 DE SANTOS A PARANAGUÁ
  • 23600 DO RIO GRANDE AO ARROIO CHUÍ
  • 50 DO RIO PARNAÍBA AO RECIFE
  • 202 DA ILHA DO BAILIQUE À PONTA DO CAPINAL
  • 316 DE MOSQUEIRO A BELÉM
  • 515 PORTO DE LUIS CORREIA
  • 1104 BAÍA DE TODOS OS SANTOS PARTE NORDESTE
  • 1106 BAIA DE TODOS OS SANTOS PARTE NORTE
  • 1310 CANAL DOS ABROLHOS E PROXIMIDADES
  • 1401 PORTOS DE VITORIA E TUBARÃO
  • 1506 PROXIMIDADE DA BAÍA DE GUANABARA
  • 1515 BAÍA DE GUANABARA - ILHA DO MOCANGUÊ E PROXIMIDADES
  • 1607 BAÍAS DA ILHA GRANDE E DE SEPETIBA
  • 1623 PORTO DE ITAGUAÍ
  • 1633 BAÍA DA ILHA GRANDE PARTE OESTE
  • 1636 PORTO DE ANGRA DOS REIS E PROXIMIDADES
  • 1637 BAÍA DA RIBEIRA
  • 1801 PORTO DE ITAJAÍ
  • 1830 PROXIMIDADES DO PORTO DE SÃO FRANCISCO DO SUL
  • 2210 COSTA DO ALBARDAO - CANAL DA ALVARENGA
  • 19002 DA AMERICA A AFRICA DO SUL
  • 23000 DO CABO DE SÃO TOME AO RIO DE JANEIRO
  • 3337 DA ILHA MARGARITA A ILHA DO TIGRE OU DA ONÇA
  • 3342 DE FORTE OLIMPO AO PASSO CURUCU CANCHA
  • 3399 LAGOA GAÍVA DA BOCA DO CARANDÁ A BOCA BRAVA
  • 3400 LAGOA GAÍVA - VOLTA DO CACHORRO E VOLTA DO GATAS
  • 3402 DA BOCA DA ANTA A VOLTA DA PRAINHA INFERIOR
  • 3406 DO ESTIRÃO INFERIOR DA BOCA DO CARÁ-CARÁ A VOLTA IGUAL INFERIOR
  • 3419 DO ESTIRÃO DO SAPIQUÁ AO ESTIRÃO DA TAQUAREIRA
  • 3420 DO ESTIRÃO DA TAQUAREIRA À VOLTA DO BUGIO
  • 3424 DA VOLTA DO SINIMBU AO PASSO PIUVA
  • 3425 DA BOCA DA PIUVA AO PASSO JATOBÁ
  • 3426 DA BOCA DO PERIQUITO A DESCALVADO
  • 3427 DA ILHA SÃO JOÃO AO PASSO DESCALVADINHO
  • 3428 DA BOCA DO PAPAGAIO AO PASSO DO MORRO PELADO
  • 3429 DA ILHA DO RIO VELHO AO PASSO BAÍA DAS ÉGUAS

Today 306 charts (353 including sub-charts) from DHN are displayed in the Marine GeoGarage

Robotic fish to patrol for pollution in harbours

The cost of water pollution runs into millions of dollars each year, and it can cause untold damage to the environment.
But now scientists have come up with an unusual solution to the problem and it comes in the shape of a robotic fish.
Dr Luke Speller from the Shoal Consortium explains how it works.

From BBC

In the shallow waters of Gijon harbour, in northern Spain, a large, yellow fish cuts through the waves.
But this swimmer stands apart from the marine life that usually inhabits this port: there's no flesh and blood here, just carbon fibre and metal.
This is robo-fish - scientists' latest weapon in the war against pollution.
This sea-faring machine works autonomously to hunt down contamination in the water, feeding this information back to the shore.

Here in Spain, several are undergoing their first trials to see if they make the grade as future marine police.
"The idea is that we want to have real-time monitoring of pollution, so that if someone is dumping chemicals or something is leaking, we can get to it straight away, find out what is causing the problem and put a stop to it," explains Luke Speller, a senior scientist at the research division of BMT Group, a technology consultancy.

The company is part of the Shoal consortium, a European Commission-funded group from academia and business that has developed these underwater robots.
"At the moment, in harbours, they take samples about once a month," says Mr Speller.
"And in that time, a ship could come into the harbour, leak some chemicals somewhere, then it's gone, all the way up the coastline.
"The idea is that we will use robot fish, which are in the harbour all of the time, and constantly checking for pollution."

Inspired by nature

The fish, which measure about 1.5m-long, may be a little larger than their real-life counterparts, but their movements closely mimic them.
Ian Dukes from the University of Essex - another partner in the consortium - says that nature was an obvious inspiration for their robot.

A robotic fish developed by scientists from Essex University is put through its paces in a special tank at the London Aquarium. It works via sensors and has autonomous navigational control.

He explains: "Over millions of years, fish have evolved the ultimate hydrodynamic shape, and we have tried to mimic that in the robot.
"They swim just like fish; they are really quite agile and can change direction quickly, even in shallow water."

But the researchers say there are other advantages to a fishy design compared with some other autonomous underwater vehicles (AUVs).
"Traditional robots use propellers or thrusters for propulsion," says Dr Dukes.
"What we're trying to do is use the fin of a fish to propel ourselves through the water.
"The fin does lend itself for a really useful tool in shallow waters especially where there is a lot of debris. We can work in environments that are very weedy, and would usually snag up propellers."

The fish use micro-electrode arrays to sense contaminants.
In their current form they can detect phenols and heavy metals such as copper and lead, as well as monitor oxygen levels and salinity.
But the team has tried to build in flexibility.
Dr Speller explains: "We have designed it so you can pull out the chemical sensor unit, and put in different ones for something else, such as sulphates or phosphates, depending on the environment that you are monitoring," he explains.

Constant watch: teams of robot fish could check for pollution

Hunting party

One they've sniffed out a problem, the fish use artificial intelligence to hunt down the source of pollution.
They can work alone or in a team, communicating with each other using acoustic signals and they can continuously report back to the port.

The trials at Gijon have been designed to put all of this technology to the test to so they can finalise the design of their robots.
"When we have our prototype, then we'll know what needs to be done to make this a complete commercial system. We hope it could happen in the next few years," said Dr Speller.
"In the future, what I'd also like to see is not just a single task robot, but robots that can multitask - robots that can do search and rescue, monitoring for underwaters divers, at the same time as tracking pollution."

Water pollution is an expensive business.
The Department for the Environment Food and Rural Affairs (Defra) has estimated that in England and Wales alone, cost of water pollution in rivers, canals, lakes and coastal waters came to £1.3bn per annum.
But it may be some time before robotic fish become permanent fixtures in our waters.
Prototypes currently cost about £20,000 each, although Mr Speller says costs will drop once more are produced.
But battery life is also an obstacle.
At the moment, the fish need to be recharged about every eight hours.

But, says Richard Harrington from the Marine Conservation Society, if the fish could overcome these barriers they could have a future.
He says: "Ports, harbours and estuaries can be challenging places to routinely monitor for pollutants, often with a lengthy time period between sampling and transport and laboratory time for analysis.
"A remotely operated device could be deployed quickly and simply in shallow water environments, enabling a rapid response for decision making and remedial action to be taken."
The Shoal consortium is formed of the BMT Group, the University of Essex, the Tyndall National Institute, the University of Strathclyde, Thales Safare and the Port Authority of Gijon.

Tuesday, May 22, 2012

Seagrasses store as much carbon as forests


From LiveSciences

Seagrasses are a vital part of the solution to climate change and can store up to twice as much carbon as the world's temperate and tropical forests, new research indicates.

"Seagrasses only take up a small percentage of global coastal area, but this assessment shows that they are a dynamic ecosystem for carbon transformation," study researcher James Fourqurean, of Florida International University, said in a statement.
"Seagrasses have the unique ability to continue to store carbon in their roots and soil in coastal seas. We found instances where particular seagrass beds have been storing carbon for thousands of years."

Seagrass bioregions

The study was the first global analysis of how much carbon is stored in seagrasses and demonstrates that coastal seagrass beds store up to 83,000 metric tons (about 91,000 short tons) of carbon per square kilometer (about 0.4 square miles), mostly in the soils below them.
For comparison, a typical terrestrial forest stores around 30,000 metric tons (33,000 short tons) per square kilometer, mostly in the form of wood.
This research also estimates that, although seagrass meadows occupy less than 0.2 percent of the world's oceans, they are responsible for more than 10 percent of all carbon buried annually in the ocean.

The study was published Sunday, May 20, in the journal Nature Geoscience.
According to the study, seagrass meadows store ninety percent of their carbon in the soil and continue to build on this for centuries.
In the Mediterranean, which is the geographic region with the greatest concentration of carbon found from the study, seagrass meadows were found to store carbon in deposits many meters deep.


Seagrasses are among the world's most threatened ecosystems.
Roughly 29 percent of all historic seagrass meadows have been destroyed, mainly due to dredging and degradation of water quality.
Every year, at least 1.5 percent more seagrass meadows are lost.
This study estimates that emissions from destruction of seagrass meadows can potentially emit up to 25 percent as much carbon as from terrestrial deforestation.

"One remarkable thing about seagrass meadows is that, if restored, they can effectively and rapidly sequester carbon and reestablish lost carbon sinks," study researcher Karen McGlathery, of the University of Virginia, said in a statement.

Seagrasses have long been recognized for their many ecosystem benefits: they filter sediment from the oceans; they protect coastlines against floods and storms; and they serve as vital habitats for fisheries production.


"The results of this global analysis emphasizes the importance of seagrass conservation and restoration," study researcher Bill Dennison, of the University of Maryland, said in a statement.
"In addition to providing habitats and nurseries for fish and shellfish and stabilizing sediments to reduce erosion, we now know that seagrass meadows have a crucial role in regulating global carbon."

The researchers emphasize that conserving and restoring seagrass meadows may reduce greenhouse gas emissions and increase carbon stores, while also delivering key ecosystem services to coastal communities.

"Our vital seagrass ecosystems have always been a conservation priority, given their myriad benefits of ecosystem services to local communities" Emily Pidgeon, of the Blue Carbon Initiative, a group which funds this project, said in a statement.
"Now we must also recognize the vital importance of coastal 'blue' carbon ecosystems, such as seagrass meadows, for their importance to global climate health."

Links :

Monday, May 21, 2012

In the Gulf’s depths, a rare time capsule

NOAA's Seirios Camera Platform, operating above the Little Hercules ROV, images the ROV and an anchor inside the hull of a copper-sheathed shipwreck in the Gulf of Mexico.
The wood has nearly all disintegrated after more than a century on the seafloor.

From NYT

Four thousand feet beneath the surface of the Gulf of Mexico and 200 miles south of Louisiana’s marshy coastline, a machine called Little Hercules levitates in the darkness above the bow of a decaying wooden ship.
Much of the wreckage has disintegrated over the many decades that the ship has soaked on the ocean floor, but Little Hercules’ lights illuminate a skeletal scrub forest of sea creatures thriving on what remains.
Little Hercules, a remotely operated vehicle, was put to work a few months ago by the National Oceanic and Atmospheric Administration to search the nooks and crannies of the Gulf of Mexico’s depths.

From March to April 2012, a team of scientists and technicians both at-sea and on shore will conduct exploratory investigations on the diversity and distribution of deep-sea habitats and marine life in the northern Gulf of Mexico.
The video footage was captured by the Little Hercules ROV and Seirios Camera Sled platform during the April 3rd ROV dive.

Using bright lights and an assortment of high-definition video and still cameras, the R.O.V. has been exploring deep-sea habitats and possible shipwrecks and reporting back to members of a NOAA expedition onboard the ship, the Okeanos Explorer.

While most of the ship's wood has long since disintegrated, copper that sheathed the hull beneath the waterline as a protection against marine-boring organisms remains, leaving a copper shell retaining the form of the ship.
The copper has turned green due to oxidation and chemical processes over more than a century on the seafloor.
Oxidized copper sheathing and possible draft marks are visible on the bow of the ship.

On the night of April 26, Little Hercules’ high-definition cameras revealed the exciting wreckage of the copper-hulled ship, which archaeologists think probably dates from the early 1800s.

“This wreck is from a period very critical to the history of the Gulf of Mexico,” said Jack Irion, a maritime archeologist with the federal Bureau of Ocean Energy Management, a partner in the expedition. He said that because the wreck laid so deep underwater, “it’s virtually untouched by any sort of storm or human activity.”
Dr. Irion has dated the wreckage primarily on the basis of a ceramic plate he saw in the photographs and videos of the wreckage.
He said that this sort of “pearlware,” with a green strip around the scalloped outer edge of the plate, was highly popular from around 1800 to 1830.

An anemone lives on top of a musket that lies across a whole group of muskets at the site of the shipwreck.

Early in the 19th century, many empires – Spanish, French, British, the United States – were vying for power in the Americas, and the Gulf of Mexico brimmed with vessels out to pirate, battle and trade, Dr. Irion said.
Riches taken from Central and South America were often shipped from the Mexican port of Veracruz, where the ships caught a loop current sweeping along the rim of the gulf toward the Florida Keys, he said.
“Little is known about the gulf and the cultural resources that exist there,” said Frank Cantelas, a maritime archaeologist with NOAA who will continue analyzing imagery from the wreckage.
He said that researchers can learn a lot about the people who lived in a specific time and place through the remains of a sunken ship.
“Wrecks are like a time capsule,” Mr. Cantelas said. So far, he has  seen a variety of hourglasses, navigational tools, cannons, muskets and glass bottles, some holding their original contents, in ship wreckage.


Researchers are not yet sure of this ship’s national origin or mission.
At the suggestion of the ocean energy bureau, Little Hercules and the researchers aboard the Okeanos Explorer investigated five different shipwrecks during the expedition, which ended on April 29.
Oil companies and other businesses that wish to develop parts of the ocean floor must first get permission from the bureau.
Usually those companies will use sonar equipment to independently explore the places they would like to develop.

 A map produced by NOAA Ship Okeanos Explorer's sonar shows the West Florida Escarpment, a steep undersea cliff.
The base of the escarpment (2,600 meters deep) is shown in blue with the upper rim more than 600 meters above.
ROV dives explored the physical structure of the seafloor and biodiversity on soft and hard bottom areas.

They create basic bathymetric maps of the sea floor and then submit their maps to the bureau.
The agency used the maps to pick out areas on the bottom of the Gulf of Mexico that seemed out of the ordinary – perhaps a shipwreck, but maybe just a pile of sediment – so that NOAA could look more closely.
The oil giant Shell was the first to notice the strange bathymetric blip that proved to be the exceptional wreckage of the 19th-century ship.