Tuesday, September 27, 2016

Canada CHS update in the GeoGarage platform

1 nautical raster chart added + 67 updated

Satellite industry is all at sea

Photo : the heroic story of the Mercury Seven, the pioneer astronauts who risked their lives for America’s first manned space voyages.
(Project Mercury ran from 1959 through 1963, put the first American in space, and defined NASA’s manned space flights to come, from Gemini through Apollo.)

From Bloomberg by Leila Abboud

Satellite operator Inmarsat was founded 40 years ago to let ships communicate with land so rescuers could aid sailors.
The maritime business, which still provides half of sales and operating profit, set it apart from rivals who were focused on broadcasting and broadband.
As a result, the British company had lower margins than peers but was insulated from the competition and macro-economic storms that buffeted others.
Now, amid the tumult of a capacity glut in the sector, even Inmarsat is getting dragged under water.
Advances in high-throughput satellites are bringing more bandwidth online than ever.
This oversupply, which might triple capacity by 2020, will pressurize sales and margins for all the big satellite players.
Since Eutelsat issued a profit warning in May, investors have punished the sector.

 25th anniversary of our flagship maritime safety service, Inmarsat C – the only GMDSS-approved satellite system which, in 2015 alone, broadcast more than 600 distress alerts from vessels in urgent need.

That even Inmarsat, with its one-time maritime fortress, is getting hit shows how far the contagion has spread.
It also highlights a less understood change in the satellite business: how the capacity boom obliterates the once clear distinctions between the different satellite companies and the markets in which they operate.
Before, there was clear separation between fixed satellite service providers and mobile.
Inmarsat dominated the latter while SES, Eutelsat and Intelsat ruled in fixed.
Now, in the scramble to sell new capacity, the different players all encroach on each other's turf.
Plus the traditional satellite broadcasting business is under pressure from fiber and cable networks that carry TV signals quite well.

Blurred Lines

With its maritime focus, Inmarsat differs from other satellite companies, but differences between them are blurring

Avanti figures reflect FYE 2015 recurring revenue, excluding the sale of spectrum.

Put it together, and you've got unprecedented change in a once dull sector.
Barclays' analysts predict a 2-3 percent drag on industry revenues for the next five years
Inmarsat's experience is instructive.
In addition to maritime, it serves governments and the military and supplies emergency cockpit communications.
But it faces competition in those areas from mobile upstarts such as Iridium as well as fixed satellite rivals Viasat and Intelsat.
The squeeze is on from both sides.
Inmarsat needs to offer faster broadband speeds to ships and planes, not the dial-up slow stuff it used to do.
That's why it committed to a series of new satellites called Global Express, which are entering service this year.
Inmarsat wants to use them to expand into new markets such as passenger jet Wi-Fi.
But it means higher capex, while revenues are less certain.
Of course, Inmarsat's competitors are suffering too.
Its growth outlook to 2018 is ahead of the pack.
The top five operators -- who control about 60 percent of sector revenue -- are all revisiting their business models. 

Choppy Waters

Inmarsat's traditional leadership in linking ships with satellite communications no longer insulates it from competition as much as it once did
And there may be a positive side to all this new capacity if the traditional suppliers have the imagination to use it to break into new markets, such as aircraft Wi-Fi, or use cheaper prices to expand in consumer broadband.
Yet it's all pretty murky predicting how this will shake out for a sector that's been used to relative stability, generous dividends and monster profit margins.
Inmarsat will have to get used to much choppier waters.

Links :

Monday, September 26, 2016

High-seas piracy hits a two-decade low

From The Economist by the Data team

PIRATES, the scourge of the high seas, were mostly kept at bay during the first half of 2016. According to the International Maritime Bureau’s Piracy Reporting Centre, there were 98 attacks worldwide in the six months to July, the lowest figure in 21 years.
Indonesia’s waters remained the most pirate-infested in the world.
The sprawling archipelago of 17,000 islands suffered 21 attacks and three attempted attacks.
The waters along the coast of Somalia, once a piracy hotspot, have seen a dramatic decline in attacks since 2011. Piracy off Nigeria’s coast, meanwhile, has increased.

Suspected pirates wait for members of the counter-piracy operation to board their boat.
Photo: US Navy/Jason R Zalasky

The recent decline in global piracy can be attributed in part to better security on ships.
For years, the UN’s International Maritime Organisation discouraged boat owners from arming their crews.
Ships tried in vain to defend against heavily-armed pirates using little more than diligent watch-keeping and water cannons.
In the mid-2000s, facing rising insurance and ransom costs, shipping companies began employing private security contractors.
These firms are increasingly supplied by “floating armouries” to help evade laws that bar crews from bringing weapons into territorial waters.

Better policing of the high seas has also played a part. In 2008, following a spate of pirate attacks in the Gulf of Aden, America, the European Union and NATO sent a flotilla of warships to patrol the coast of Somalia.
The large naval presence today deters all but the most ruthless buccaneers.
But “Operation Ocean Shield”, NATO’s counter piracy mission, is scheduled to end in December.
Perhaps it is time to batten down the hatches once again.

Links :

Sunday, September 25, 2016

This mind-blowing infographic shows the incredible depth of the earth's oceans

People sometimes forget that oceans contain a lot more than the water you see just beneath the surface.
The depths below the ocean’s surface comprise a staggering 95% of the earth’s living space, and much of it is unexplored by humans.
To put into perspective just how deep the oceans go, Xkcd.com created this illustration (click the image for a larger version):

From BusinessInsider by Pamela Engel

As you can see, most of the ocean doesn’t even see sunlight.
Even scientists aren’t familiar with everything that’s down there.
In fact, getting to the deepest reaches of the ocean is so expensive that some people — like Oscar-winning director James Cameron — take it upon themselves to explore underwater spaces rarely visited by humans.
Cameron visited the Mariana Trench, the deepest place on earth at seven miles below the surface of the Pacific Ocean, in a minisubmarine in 2012.
He was only the second person to visit that area of the ocean.
He didn’t see any sea monsters, but he described the experience as out of this world.

Saturday, September 24, 2016

Friday, September 23, 2016

Computing the ocean's true colors

 Modeled phytoplankton types on cubed sphere
The data is from a simulation of the Darwin model in a physical run of the MITgcm by the ECCO2 group.
The model has 78 types of phytoplankton, nutrients, zooplankton and disolved and particulate organic matter. 
(other video)

From Phys.org by Mark Dwortzan

When she was 17, Stephanie Dutkiewicz set sail from her native South Africa to the Caribbean islands.
Throughout a three-month journey, she noticed that the color of the ocean shifted from place to place, but it wasn't until she took up oceanography in college that she came to understand why.
Early on in her studies, she learned that ocean color varies from green to blue, depending on the type and concentration of phytoplankton (algae) in the area.
As they use chlorophyll, a green pigment, to generate organic carbon through photosynthesis, these "plants of the sea" reflect light; the more phytoplankton in the ocean, the less blue and more green the color of the water.

Stephanie Dutkiewicz in her office with a display of her phytoplankton model simulation.
Credit: MIT Joint Program on the Science and Policy of Global Change

Now a principal research scientist in MIT's Joint Program on the Science and Policy of Global Change and Department of Earth, Atmospheric and Planetary Sciences (EAPS), Dutkiewicz remains focused on these drivers of ocean color.
For more than a decade, she and her main research partner, EAPS Associate Professor Mick Follows, have been leading a team of a dozen MIT researchers and several collaborators from universities around the world to advance the Darwin Project, which aims to model the growth, loss, and movement of phytoplankton around the world, the environments that they inhabit, and how they affect one another.
Dutkiewicz is systematically probing phytoplankton behavior to home in on what traits distinguish one of thousands of phytoplankton species from another, which types will survive and thrive under different environmental conditions, and where different types are likely to live.
Guided by laboratory, ship, and satellite observations, she has represented as many as 100 different types of phytoplankton—other groups typically model no more than five—in complex computer models that simulate phytoplankton population dynamics in the ocean and project how those dynamics will change in coming decades.
Producing results that square with actual observations, these models, which comprise hundreds of thousands of lines of code, are generating the world's most complex 2-D and 3-D global maps of phytoplankton activity and ocean color.
Visually arresting, the maps suggest profound implications for the future of the planet, from the sustainability of the ocean's food web to the pace of global warming.
"Since they are at the base of the food web, understanding which types of phytoplankton live where and projecting how these populations are likely to change will help us understand what will happen further up the food chain," Dutkiewicz explains.
"And because the process by which these phytoplankton take carbon and sink it down into the deep ocean is responsible for storing about 200 parts per million (ppm) of carbon dioxide, they play an important role in the Earth's climate system."

Size matters

In an ongoing phytoplankton modeling study funded by the National Science Foundation, Dutkiewicz and Follows are investigating several distinguishing traits and their potential impact on the planet.
Traits they've identified include those based on behavior, such as rates of nutrient uptake, temperature tolerance and light tolerance, and those based on size.
In the phytoplankton world, size matters.
While all are microscopic, individual phytoplankton range in diameter from under 1 micrometer to more than 1,000 micrometers—akin to the size difference between a mouse and Manhattan.
As the ocean warms, its upper layers are expected to interact less with lower layers where nutrients are concentrated.
As a result, smaller phytoplankton, which are best equipped to tolerate compromised nutrient conditions, will likely outnumber larger phytoplankton, which are more effective at storing carbon. Such changes may not only shift the oceanic food web to one based on smaller phytoplankton but also reduce the ocean's effectiveness as a carbon sink.

Computer simulations based on Dutkiewicz’ phytoplankton models have produced global maps of ocean color like this “Living Liquid” exhibit at the San Francisco Exploratorium — an interactive touchscreen table showing phytoplankton types in different colors. Credit: San Francisco Exploratorium

Most phytoplankton models, including those used by the Intergovernmental Panel on Climate Change (IPCC), usually resolve just two phytoplankton types: small and large.
So when the ocean warms to a certain point in the coming decades, the modelled phytoplankton populations appear to shift dramatically, with small ones far outnumbering large ones. In reality, however, these shifts are expected to occur gradually.
"Because we include a more diverse size distribution in our model, we find that as we run out the 21st century, phytoplankton sizes don't quickly shift from big to small, but rather from big to slightly smaller," says Dutkiewicz.
"So the impact might not be as large as the IPCC models predict."
To assess the impact of phytoplankton size and function on the climate, Dutkiewicz and her collaborators represent the global ocean as a set of location-based grid cells, each sized at a resolution that's fine enough to validate the model through satellite and ship observations.
Within each grid cell, the model solves a set of equations that account for phytoplankton growth, movement, loss, carbon cycling and other population dynamics.

Comparison of modeled and SeaWiFs Chl

True colors

With funding from NASA, Dutkiewicz is also using the computer model to "ground-truth" satellite observations of phytoplankton concentrations in different parts of the ocean, which are based on how much light is emitted from the ocean surface.
The light is reflected by chlorophyll in phytoplankton, which absorb more blue than green light.
By measuring how much blue versus green light is emitted, the satellites estimate how much chlorophyll is present at a given location.
Such estimates are crude at best, so Dutkiewicz is working to assess the level of uncertainty in chlorophyll ocean maps by representing reflected light in her phytoplankton models.
Her models produce true colors of the ocean today, and project ocean colors throughout the 21st century based on changes in phytoplankton population dynamics.

For example, as the ocean warms and becomes more acidic, phytoplankton populations will change, thus altering chlorophyll levels and impacting how much light is reflected from the ocean surface.
"Tracking this could help us identify a real, climate-change-driven signal that stands out from the year-to-year, natural variability in phytoplankton populations across the globe," she says.

Dutkiewicz' career path as an oceanographer has uniquely positioned her to pinpoint such signals.
As a PhD student in physical oceanography at the University of Rhode Island, she originally focused on capturing the movement of ocean currents.
When she came to MIT in 1998 as a postdoc in EAPS, she studied how physics alters the biology of phytoplankton (e.g. how ocean currents move their biological cargo), and built a numerical model of the marine ecosystem based on one type of phytoplankton.
Now modeling up to 100 times as many types, she is perhaps the most qualified person in the world to explain not only why the colors of the ocean vary from place to place, but also what those colors might portend for the future of the planet.

Links :

Thursday, September 22, 2016

Greenland's huge annual ice loss is even worse than thought

Aerial surveys show two glaciers flowing into Johan Petersen fjord in south-eastern Greenland.
The melting of the ice sheet would cause oceans to rise by six metres around the world if it was lost entirely.
Photograph: Jeremy Harbeck/Icebridge/NASA

From The Guardian by Damian Carrington

Ice cap is disappearing far more rapidly than previously estimated, and is part of a long-term trend, new research shows

The huge annual losses of ice from the Greenland cap are even worse than thought, according to new research which also shows that the melt is not a short-term blip but a long-term trend.
The melting Greenland ice sheet is already a major contributor to rising sea level and if it was eventually lost entirely, the oceans would rise by six metres around the world, flooding many of the world’s largest cities.
The new study reveals a more accurate estimate of the ice loss by taking better account of the gradual rise of the entire Greenland landmass.
When the ice cap was at its peak 20,000 years ago, its great weight depressed the hot, viscous rocks in the underlying mantle.
As ice has been shed since, the island has slowly rebounded upwards.
Previous satellite estimates of modern ice losses tried to take this into account, but precise new GPS data showed much of Greenland is rising far more rapidly than thought, up to 12mm a year.
This means 19 cubic kilometres more ice is falling into the sea each year, an increase of about 8% on earlier figures.

The southern tip of Greenland seen from space.
Photograph: ISS/NASA 

The faster rebound is thought to be the result of hotter, more elastic mantle rocks under eastern Greenland, a remnant from 40m years ago when the island passed over the hot spot that now powers Iceland’s volcanoes.
The new work was also able to reconstruct the ice loss from Greenland over millennia and found that the same parts of Greenland - the north-west and south-east - were where most ice is being lost both in the past and today.
This means the rapid ice loss recorded by satellite measurements over the last 20 years is not likely to be a blip, but part of a long-term trend being exacerbated by climate change.
Global warming is driving major melting on the surface of Greenland’s glaciers and is speeding up their travel into the sea.
“The fact that we are seeing such a similarity of past and present behaviour suggests we could lose ice in these regions for decades into the future,” said Prof Jonathan Bamber, at the University of Bristol, UK, and one of the international team of scientists who carried out the new study, published in Science Advances.

 Aerial Camera views from shore visits on the east and west coasts of Greenland, August 2016.

Bamber said the presence of a long-term trend does not mean global warming is not a crucial factor: “One thing we can be certain of is that a warmer atmosphere and a warmer ocean is only going to accelerate this trend.”
“The headlines of climate change and melting polar ice are not going to change,” said Dr Christopher Harig, at the University of Arizona, who was not involved in the study.
“The new research happening now really speaks to the question: ‘How fast or how much ice can or will melt by the end of the century?’ As we understand more the complexity of the ice sheets, these estimates have tended to go up. In my mind, the time for urgency about climate change [action] really arrived years ago, and it’s past time our policy reflected that urgency.”

Melt water on the surface of Greenland ice sheet 10 June, 2014 and 15 June, 2016.
Every spring or early summer, the surface of the sheet transforms from a vast white landscape of snow and ice to one dotted with blue meltwater streams, rivers, and lakes.
In 2016, the transition started early and fast.
Credits: OLI/Landsat 8 and ALI/Earth Observing-1/Nasa

Dr Pippa Whitehouse, at the University of Durham and also not involved in the new research, said: “This study highlights the powerful insight that GPS measurements can give into past and present ice loss. Using such measurements, this study demonstrates that some of the highest rates of ice loss across Greenland - both in the past and at present - are found in areas where the ice sheet flows directly into the ocean, making it dangerously susceptible to future warming in both the atmosphere and the ocean.”

 This video shows images from a science flight on August 27, 2016, over a heavily crevassed portion of the Rink Glacier in western Greenland.
NASA's Operation IceBridge flies with a high-resolution camera on board, pointing straight down and taking overlapping images during the entire flight. These images represent a data product in their own right, and also provide a visual reference to help researchers better understand the data they get from other instruments.
(NASA/Rob Russell)

The team behind the new research said better estimates of continental rebound rates could be even more significant in estimates of ice loss from the world’s biggest ice cap, in Antarctica, but that sparse data from the remote continent made analysis difficult.
In April, very high temperatures led to a record-breaking early onset of glacier melting in Greenland, while another satellite study in August reaffirmed the rapid loss of ice.

Links :