Thursday, January 21, 2021

Europe’s satellites could help catch the next climate disaster


The European Space Agency’s Sentinel-3 satellite captures snow cover and clouds across the Alps on Dec. 14.
Credit: ESA/Copernicus


From Bloomberg by Jonathan Tirone


The European Space Agency has taken the lead in building planetary simulations to predict major climate disruption.


Spain began the new year battling Storm Filomena, a once-in-a-generation weather event that blanketed Madrid in snow and paralyzed the economy.
Health workers were stranded, supermarkets shut, and the army was called in.
At least four people died.

“Now, consider a government or company that knew two weeks ago there was a risk that this would happen,” said Francisco Doblas-Reyes, a physicist at Barcelona’s Supercomputing Center.
“Knowing the risk that a 1-in-20-year event was going to happen would have given more possibilities to prepare.”

 
This handout image released by the European Space Agency on 19 November, 2020, shows the Sentinel-6 satellite, dedicated to measuring sea levels as part of the European Union's Copernicus Earth Observation.
(Photo credit: AFP PHOTO/ European Space Agency)

Doblas-Reyes and his team are working on complex models that they hope can better detect the next Filomena, a job that’s become increasingly important as climate change makes weather more unpredictable — and extreme.
The data collected by European satellites is at the heart of the continent’s multibillion-euro Destination Earth program seeking to develop the world’s best digital simulation of Earth.

“We have the gold standard of satellite infrastructure in space,” said Josef Aschbacher, the geophysicist who’ll become Director General of the European Space Agency this year.
Europe’s space agency has 16 Earth observation satellites in orbit with some three dozen under development and, according to Aschbacher, is in talks with the U.S. National Aeronautics and Space Administration to assume even greater responsibility for climate monitoring in the next decade.

As U.S. climate research took a backseat to human spaceflight, deep-space exploration and the creation of a military force for outer space during the Trump administration, European scientists have focused on finding new ways to understand the changing atmosphere.
In November, the EU launched a satellite on board a NASA-backed Space X rocket that can track miniscule changes in sea levels, down to the millimeter.
New projects are underway to monitor freshwater flows and greenhouse gas emissions, technical challenges akin to forecasting how a drop of ink will disperse inside a choppy pond.

By using artificial intelligence and supercomputers, the first digital-twin simulations of Earth could be ready by 2028, according to Aschbacher.
The ESA’s data is publicly available, allowing everyone from the scientists in Barcelona to farmers and insurers to improve their own models at the same time.
“If you really want to make it useful, you have to make sure the information is available in a way that people can visually use it,” he said.
“What the people really want to know isn't just the status of today but a projection of the future.”


The Sentinel-6 updates maps of the oceans covering 70% of the planet every 10 days.
Credit: European Space Agency


U.S.researchers running their own Earth-system simulations — an idea first conceived by Vice President Al Gore in the 1990s — say the EU has taken the lead in boosting climate-model resolutions.
The new tools will enable researchers to drill down and detect changing patterns within a kilometer area, compared with about 10 square kilometers at present.
That should give scientists new insight into phenomena like cloud formation and how ocean eddies transport heat.

The new climate models also have the potential to help investors make better decisions.
Storms, fires and floods killed at least 8,200 people and cost the world $210 billion in insured losses in 2020, according to a report published this month by Munich Re.
Those damages could swell as the world inches closer to crossing the 1.5 degree Celsius warming threshold that scientists predict will lead to more frequent superstorms and higher sea levels.

“There’s a lot of information there but too much information is also bad,” European Central Bank Governing Council member Robert Holzmann said in a November interview.
“You cannot get the right signals from it.
The information has to be brought down to a handful or two of criteria that are the most critical.”

To solve that problem, European scientists are working on a series of easy-to-read climate indexes that could inform investment decisions in the future, according to EU documents.
They’ve teamed up with traders and weather analysts from European utilities including Electricite de France, EDP Renovaveis SA and Vattenfall AB to develop such tools — with varying degrees of success.

“Meteorologists at EnBW trust the science and statistical methods on which the tool is based,” said Michael Christoph, a weather analyst at German utility Energie Baden-Wuerttemberg AG.
“However, building the same trust among energy traders will take some time.”


Monthly seasonal forecasts of temperature, precipitation and atmospheric pressure need to increase levels of accuracy
Credit: Copernicus Climate Change Service


At present, seasonal weather models published by the ESA’s climate service aren’t always up to the task of supporting longer-term investment decisions because they aren’t calibrated to catch events like Storm Filomena and only generate broad probabilistic forecasts.
But that could change in coming years as 8 billion euros pours into a new generation of supercomputers capable of calculating billions of equations every second, according to Doblas-Reyes.

“There is a continuum of information that these companies need, information ranging from the next hour to the next day to the next weeks,” he said.
“We need to help government prepare and companies to profit from these events.”

Wednesday, January 20, 2021

The global transition to remote and autonomous operations

Take a virtual tour around our state-of-the-art remote operations centre in Aberdeen.
As part of our global network of remote operation centres, it offers data processing, satellite positioning, remote piloting and surveying and inspection of offshore assets.

From Hydro by Hugh Parker & Ross MacFarlane

The Benefits and Challenges Facing the Maritime Industry


Over the next five years, we will witness a significant reduction in the maritime industry’s reliance on larger vessels, as the focus on compact and agile uncrewed surface vessels (USVs) increases and a wider transition towards remote marine operations continues to gather momentum.
The benefits as well as the legal framework challenges of remote and autonomous operations will have a profound impact on the energy and maritime industries.

The ability to plan, manage and monitor offshore projects, and to maintain assets and infrastructure, through remote operations and autonomous capabilities is increasingly critical within the energy and maritime industries.
Through their flexible deployment and good connectivity with onshore remote operations centres (ROCs), USVs can acquire data to support these objectives faster than ever before.

Safety and Sustainability

USVs also provide significant benefits when it comes to safety: used as force multipliers alongside crewed parent vessels, they allow crewed vessels to remain at a safe distance from assets such as wind turbines and avoid unnecessary risk for those onboard.
This has the potential to translate into a 100% reduction in human exposure to hazardous offshore environments where, rather than transmitting their situational awareness and vessel status data to personnel onboard parent vessels, USVs will ultimately be solely controlled from the safety of an onshore location, such as one of Fugro’s ROCs.

Additionally, clients are increasingly looking to reduce the environmental impact of their operations in line with the zero emission targets presented in the UK government’s Maritime 2050 route map.
The global transition towards remote and autonomous working will help to reduce the greenhouse gases emitted by the maritime industry, as hybrid USVs consume up to 95% less fuel than conventional vessels.

However, despite these obvious advantages, as innovation outpaces regulation, the legal framework in which USVs operate remains a challenge.

Fugro’s Blue Shadow next-generation uncrewed surface vehicle.

Maritime Legislation for Uncrewed Vessels

The safety of life at sea is a core value of all maritime authorities around the globe.
The current maritime legislation has been carefully crafted over many decades with the safety of the mariner at its core; however, we are now transitioning to a future where vessels no longer have a mariner onboard, which creates a gap in the current legislation.
This poses an interesting problem of how to legislate for both crewed and uncrewed vessels operating side by side.

Safety Standards

As is the case with the rapid development of any new technology, it is challenging to create fixed ruling that leaves room for constant innovation and the continued progression of new methods of working.

One of the first attempts at this will be the revised workboat code being developed by the Maritime and Coastguard Agency (MCA), expected by the start of 2022.
The workboat code document will apply to commercial vessels up to 24m long and include new regulations covering MASS.
This reflects the fact that many USVs in development or already operating are smaller than their conventional crewed vessel counterparts.

The focus of this forthcoming legislation is expected to shift from the safety of crew onboard to the safety of other seagoing vessels and the wider environment.
This is particularly the case with the adoption and creation of rules to ensure that vessels can maintain an awareness of their surroundings and take appropriate action to prevent incidents.
At present, vessels have two clear ways to achieve this: through remote monitoring and control by a human operator and/or using onboard situational awareness and collision avoidance software.

Fugro’s Blue Shadow hydrographic survey operations displayed onscreen in a Fugro remote operations centre.

Trusting Uncrewed and Remote Technology

Much like self-driving cars, societal acceptance is crucial to the adoption of these new technologies, where they are expected to work correctly 100% of the time with no margin for error.
While collision avoidance systems are being developed to improve USVs’ navigation safety, the question of public trust remains: can we trust a USV to be left alone at sea and respond as a conventional crewed vessel would? If not, how do we ensure that the people who are remotely monitoring and controlling them have the same situational awareness as they would onboard?
The regulations which eventually come into force will need to balance the developmental freedom to truly revolutionize the way in which the maritime industry operates with the ongoing protection of those human lives still at sea, while also improving safety standards and protecting the environment.

Trialled and Tested USV Operations


Fugro’s Blue Shadow is a globally deployed, next-generation 9m autonomous and uncrewed hydrographic survey platform delivering nearshore seabed insights faster.
Part of Fugro’s overall hydrographic solution, Blue Shadow is one of many from its fleet of USVs ranging from 9m to 24m, within the suite of remote and autonomous capabilities that are more sustainable when compared to conventional vessels.
Sustainability of USVs is an advantage built into their design concept from the beginning: vessels whose function is purely to survey and acquire data can of course be much smaller than traditional vessels, which are designed to transport people and cargo.

Fugro recently completed its first remotely operated hydrographic survey using Blue Shadow to capture hydrographic and bathymetric data to support safe navigation, nautical charting, marine site characterization and resource management activities.

Fugro’s Blue Shadow performing its autonomous survey trials off the coast of Portchester, UK.

Executed during challenging environmental conditions, including waves of up to 2m, the compact, wave-piercing design of the USV allowed it to acquire high-quality data in conditions that would have been unworkable for conventional vessels.
This lengthening of the potential work window increases surety of project delivery, providing more opportunities throughout the year to acquire much-needed data for clients.

The survey operations also achieved, depending on the sea conditions, a 61% to 96% reduction in greenhouse gas emissions through significantly reduced fuel consumption.
Moreover, the innovative collision avoidance and advanced spatial awareness technology built into the Blue Shadow ensured its autonomous operations met the highest safety standards.

What Next?

While the development and deployment of new remote and autonomous solutions progress, the legal framework will continue to play an essential role in influencing the design and engineering parameters for next-generation USVs and other MASS.
We are currently in a critical phase of the global transition to remote and autonomous maritime operations and it is essential that the legal framework is swiftly put in place to allow these technologies to flourish.

Fugro’s Blue Essence USV, part of Fugro’s remote and autonomous operations solution, carrying out inspection operations.

Links :

Tuesday, January 19, 2021

Australia (AHS) layer update in the GeoGarage platform

 
10 nautical raster charts updated
 
1756 map of Australia and New Zealand 

The Arctic Ocean is teeming wth microfibers from clothes

Getty Images
 
From Wired by MattSimon

Scientists find an average of 40 microplastic particles per cubic meter of the northern water.
The likely source? The synthetic clothing in our washing machines.

Throw a polyester sweater in the washing machine and it’ll come out nice and clean, but also not quite its whole self.
As it rinses, millions of synthetic fibers will shake loose and wash out with the waste water, which then flows to a treatment plant.
Each year, a single facility might pump 21 billion of these microfibers out to sea, where they swirl in currents, settle in sediments, and end up as fish food, with untold ecological consequences.

Everywhere scientists look in the world’s oceans, they’re finding microfibers, technically a subcategory of microplastics, which are defined as particles less than 5 millimeters long.
And now, after making four expeditions across the Arctic Ocean, a team of scientists is reporting just how badly even these remote waters have been tainted.
Sampling as deep as 1,000 meters, they found an average of 40 microplastic particles per cubic meter of water, 92 percent of which were microfibers.
Nearly three-quarters of these were polyester, strong evidence that humanity’s addiction to synthetic clothing is corrupting Earth’s oceans.

“It simply illustrates just how contaminated our planet has become with synthetic polymers,” says Peter Ross, an ocean pollution scientist and marine pollution adviser at Ocean Wise Conservation Association, a conservation NGO, and lead author on a new paper in Nature Communications describing the findings.

Sea ice in the Canadian Arctic Archipelago in July 2017.
Seawater samples were taken from 71 locations across a vast swathe of the Arctic region.
Credit: David Goldman/AP
 
Ross and his fellow researchers from the Department of Fisheries and Oceans Canada took care not to sample surface waters, which tend to accumulate buoyant styrofoam and lost fishing gear.
For this reason, that water is not a proper representative sample of the plastic pollution that lurks in the sea.
Instead, they had to collect water from a few meters beneath the surface, and—conveniently enough—their research vessels had intakes ports situated on the bottom of their hulls.
The scientists also took samples up and down the water column, as deep as 1,015 meters, from six stations in the Beaufort Sea above Alaska.

They had to be sure, though, that they weren’t mistaking natural particles for synthetic ones, so they employed a forensic technique called Fourier transform infrared spectrometry, or FTIR.
An instrument bombards the particles with an infrared beam, exciting certain molecules in the sample, and analyzing the infrared signature reflected back at the detector.
In this way, the scientists could not only confirm whether a particle was synthetic, but could also determine what kind of plastic it was.
“Even our trained technicians in our group would often mistake these mystery particles for plastic when they are in fact something natural,” says Ross.
“So the FTIR is very important to confirm that the mystery particle is plastic or not.”

Particles confirmed, the team measured their lengths and diameters, which matched the known dimensions of synthetic fibers.
Nearly 75 percent of the fibers were polyester, a common material in synthetic clothing, and they came in a range of colors too.
“The alignment is striking,” says Ross.
“All of this really does line up our concerns around the prospects of a significant role for textiles and laundry in contaminating the world's oceans.”

Microplastic (MP) particles were characterized in 71 near-surface (3–8 m depth) seawater samples collected during four oceanographic expeditions in 2016: (i) aboard the CCGS Sir Wilfrid Laurierwith samples from the North Pacific Ocean, Bering Sea and Chukchi Sea (C30; blue squares); (ii) the United Nations Convention of the Law of the Sea expedition aboard the CCGS Louis S. St-Laurentalong a transect from Tromsø, Norway, passing over the North Pole and into the northern Canada Basin (UNCLOS; black circles); (iii) the Joint Ocean Ice Study aboard the CCGS Louis S. St Laurentwith samples from the Canada Basin (JOIS; red triangles); and (iv) the One Ocean Expeditions RV Akademik Ioffe, with samples collected from Greenland through the central Canadian Arctic Archipelago (OOE; yellow triangles). Microplastic samples (26) were collected at six stations in the Beaufort Sea down to 1015 m (pale blue diamonds). Arrows are drawn to provide an approximate representation of the well-described inflows of Atlantic- and Pacific-origin waters into the Arctic Ocean. The width of the arrows is proportional to the volume of the inflow
source Nature
 
Because the team had data from four expeditions that wandered all over the Arctic, they could compare their samples from the eastern region (above the Atlantic Ocean) to the western region (above Alaska and the Yukon).
They found three times more particles in the east compared to the west.
The fibers were also 50 percent longer in the east and their infrared signature more closely resembled that of virgin polyester—indicators that these fibers were newer.
“As fibers move into the Arctic or into the environment, they get weathered, they get older over time,” Ross says.
“The infrared signature changes with sunlight, with chemical processes, with bacterial decomposition.”

Their results showed that the weathering was more evident in fibers found in the west.
So taken altogether, the scientists reckon this means that most of the particles are arriving from the east and degrading as they travel to the west.
While there is some inflow of water from the Pacific Ocean into the western Arctic, it seems that far more particles are entering the eastern Arctic from the Atlantic Ocean, where inflow is greater.
The microfibers swirl around for a time, aging and weathering, with many of them likely ending up in the western Arctic.

The findings jibe with research published last September that found that Arctic Ocean sediments are packed with blue jean fibers washed out to sea in wastewater.
Also last year, another team of scientists found that currents are transporting microplastic particles around oceans, eventually depositing them en masse in sediment “hot spots” on the seafloor.


The Canadian Coast Guard Ship Louis S. St. Laurent transiting the Arctic Ocean.
This expedition between Norway and Canada collected seawater samples for microplastics analysis.
Image via Arthi Ramachandra/Fisheries and Oceans Canada.

Which is all to say: Microplastic particles and fibers are traveling vast distances.
This new research not only confirms that the Arctic Ocean is teeming with the fibers, it also offers an explanation of how they’re getting there.
It’s likely that wastewater treatment facilities in Europe and along the east coasts of Canada and the US are dumping untold numbers of them into the Atlantic, where currents carry the particles up to the Arctic.

Air transport also probably plays a role: Scientists previously found up to 14,000 microplastic particles per liter of remote Arctic snow, and they concluded that the stuff had likely blown in from continental Europe.
Researchers have also found that microplastics get transported out of the sea when waves crash and spew ocean spray loaded with particles into the air, where the tiny plastic bits can then float.

"This is an important piece of work that provides a valuable data set for future microplastic research," says University of Strathclyde microplastics researcher Steve Allen, who wasn't involved in the research.
"The level of detail is exceptional.
Their findings add a tremendous amount of weight to the discussion surrounding laundry outputs of microplastic fibers to the environment, and the need to address it quickly.
It really hammers home the fact that you can't pollute in any one place and expect that it will stay there."

One big remaining question is how those microplastics might be affecting the ecosystems they infest.
Ocean sediments are loaded with the stuff, and scientists have already discovered that fish larvae mistake these particles for food.
“We need to find out how much of this is already incorporated into the food web, which is, of course, already under threat from global climate change,” says marine ecologist Melanie Bergmann of the Alfred Wegener Institute for Polar and Marine Research, who researches microplastic in the Arctic but wasn’t involved in this new work.

Now, what to do about this omnipresent pollutant? It’s not likely that humanity will instantly phase out clothing made of synthetic material.
But we as consumers can demand that brands abandon fast fashion—cheaply made synthetic clothing that easily shreds into microfibers.
Governments can also legislate that washing machine manufacturers add fiber-trapping filters to their products.
In the meantime, you can retrofit your machine with an aftermarket filter or wash your clothes in a special bag that keeps microfibers out of wastewater.

This new research adds to a growing body of evidence fingering clothing as a major source of microplastic pollution all over the planet, from the tops of remote mountains to the bottom of the sea.
“It highlights once more,” says Bergmann, “that we need to tackle this issue by either reducing our usage of such textiles or improving our retention facilities and sewage treatment plants.”

 
Links :

Monday, January 18, 2021