Friday, February 14, 2020

Understanding GPS spoofing in shipping: How to stay protected

The weak signals sent by orbiting satellites can be easily swamped and spoofed
ESA

From Safety4Sea

Knowing exactly where you’re sailing and where to sail next is the most important part of a vessel’s navigation which can be accomplished by the use of GPS.
Yet, what happens when your GPS gets spoofed?
GPS spoofing, often leading to GPS outages, causes major disruptions to the shipping industry impacting safe navigation, leading to paralyzed shipping lanes, collisions and untraceable attacks.


GPS spoofing

The attack tries to deceive a GPS receiver by broadcasting fake GPS signals, which resemble normal signals, or by broadcasting genuine signals captured elsewhere or at a different time.

This act causes the receiver to believe its position to be somewhere else than where it is, or to be located where it is but at a different time, as determined by the attacker.

NOAA explains that a GPS consists of three systems:
  • Satellites: Satellites act like the stars in constellations—we know where they are supposed to be at any given time.
  • Ground stations: They monitor and control the satellites, and they help determine their locations—both where they were and where they are forecast to be.
  • Receivers: A receiver, like you might find in your phone or in your car, is constantly listening for signals from these satellites, which can be used like a giant tape measure between the receiver and satellites.
Last year, the maritime sector experienced disruptions in navigation caused by GPS interferences, with some, such as the GPS attacks in the Strait of Hormuz, being called ‘strategical’ attacks, with US believing that Iran was to blame.

2019 incidents

The most often places that the attacks occurred were Eastern, Central Mediterranean Sea, Suez Canal and the Strait of Hormuz.

a) People’s Republic of China

The latest GPS outage that caught the shipping’s eye was in 2020, when it was reported that the People’s Republic of China observed a number of GPS spoofing incidents in and around coastal areas and ports.

What happened was that the Centre for Advanced Defense Studies (C4ADS) examined the AIS data in the area and found out that hundreds of vessels were spoofed, with the activity being ongoing for months against vessels across Shanghai simultaneously and mostly vessels navigating the Huangpu River.

b) Eastern, Central Mediterranean Sea, Suez Canal

The US Maritime Administration (US MARAD) alerted the shipping industry that they received reports about GPS interference incidents in the Eastern and Central Mediterranean Sea, and Suez Canal resulting to lost GPS signals that seriously affected the vessel's navigation and operations.

The alert was about GPS interference reported between Libya and Malta, specifically in areas offshore of Libya and to the east and the northwest of Malta.

Also, in the Eastern Mediterranean, these reports were concentrated near Port Said, Egypt, the Suez Canal, and in the vicinity of the Republic of Cyprus.

Instances of similar interference were also reported between Hadera, Israel and Beirut, Lebanon.

c) Strait of Hormuz

The area was a hot spot for attacks either against ships or against their GPS systems; the attacks against commercial vessels, the shooting down of a US Navy drone and of an Iranian drone, while also the seizure of the UK-flagged 'Stena Impero' by Iranian authorities seriously affected shipping navigation and trade in the area.

In addition to the above attacks, it was reported that ships that were sailing in the region experienced unusual GPS interference.

Consequently, the US MARAD warned that ships operating in the Persian Gulf, Strait of Hormuz, and Gulf of Oman may also encounter GPS interference, bridge-to-bridge communications spoofing or other communications jamming with little to no warning.

 C4ADS Research shows GPS spoofing detected via AIS data

Report states that Russia’s GPS spoofing threatens shipping

In the meantime, on the same year a report by C4ADS revealed that Russian GPS spoofing threatened the safe navigation of vessels.

C4ADS and UT Texas determine the location of a GPS spoofer in Syria via ISS GPS data

Specifically, the non-profit analytical group used publicly available data and commercial technologies, analyzed patterns of GNSS spoofing in the Russian Federation, Crimea, and Syria, which revealed that the Russian Federation is developing an advantage in the targeted use and development of GNSS spoofing capabilities to achieve tactical and strategic objectives at home and abroad.

 Black Sea spoofing activity (Jan 2016 - Nov 2018)

GPS spoofing attack that caught shipping’s eye

A serious GPS spoofing incident took place in 2017 when approximately 20 vessels experienced GPS spoofing while sailing through the northeast portion of the Black Sea.

Concerning the incident, a master that was sailing in the Black Sea contacted the US Coast Guard Navigation Center (NAVCEN) to report the disruption, as his GPS put him in the wrong spot than where he actually was.
The master understood that there was something wrong with the GPS after contacting other vessels nearby, which experienced same problems.

Referring to the dangers of GPS spoofing incidents, CHIRP highlighted that crews should not be solely reliant to technological means and advises that they should cross-check with other independent and reliable navigation techniques.
CHIRP Maritime has repeatedly highlighted the importance of traditional navigation and keeping a good lookout. It is imperative that critical sections of every passage are carefully planned and executed.

Overall, GPS is a crucial tool for a safe navigation, helping the master and the crew understand the vessel’s position and direction.
Therefore, key shipping stakeholders provided recommendations and steps to be taken to deal with this kind of incidents.

The Fugro Oceanstar system detects when a vessel’s position is being manipulated, if there is a cyber-attack, it will trigger a spoofing alarm to alert the crew.

In essence, it is recommended to:
Report such incidents in real time, providing detailed information of the vessel, as the location, date, time and duration of the outage/disruption.
Provide photographs or screenshots of equipment failures that may help with the analysis of the incident.
Make sure that the navigators are fully aware of a potential GPS jamming and spoofing and the differences between the two and how and what ship's equipment they will affect.
Ensure navigators can use other means of fixing the vessel's position without the use of GPS.
Make sure that navigators have the knowledge on using a variety of position fixing methods in order to cross check the vessel’s position and accuracy of the GPS location being shown.
Be always informed of specific ‘sensitive’ areas that you are about to sail by and exercise caution.

Concluding, urging the shipping industry to take action against GPS outage, 14 maritime organizations sent a letter to the USCG’s Commandant Karl Schultz, asking that the issue of 'deliberate interference' with America’s Global Positioning System (GPS) and other Global Navigation Satellite Systems (GNSS) signals to be resolved.
We request that you raise the urgent issue of deliberate interference with America’s Global Positioning System (GPS) and other Global Navigation Satellite Systems (GNSS) signals at the upcoming 122nd session of IMO Council from July 15th to 19th 2019

… the letter stated.

Links :

Thursday, February 13, 2020

Germany (BSH) layer update in the GeoGarage platform

113 nautical raster charts updated

How AI is identifying illegal trawlers in Africa

A buoy fitted with a trackable transponder collects fishing data off the coast of West Africa.

From ChinaDialogue by Todd Woody

Satellites and artificial intelligence are helping to pinpoint foreign fleets exploiting fish in the waters of African nations

Africa is a hotspot for illegal fishing by foreign fleets, and now for the first time, researchers have pinpointed where that illicit activity is happening around the entire continent – and identified the culprits.

Based on their map, which uses satellite technology to track boats’ movement and artificial intelligence to interpret it, researchers at Global Fishing Watch have singled out industrial trawlers operating unlawfully in inshore waters reserved for small-scale “artisanal” fishers.

Their findings show these big, foreign ships are targeting certain countries.
For instance, 93% of industrial fishing in Somalia between 2012 and 2016 occurred in a banned area – a zone stretching 24 nautical miles from the shore that had been set aside for small, local fishing boats.

All those industrial trawlers were flying South Korea’s flag, according to a new paper documenting the research.
Other large vessels most often making incursions into the inshore waters of African countries were flagged to the European Union (Greece and Spain) and China.

With the World Trade Organisation (WTO) missing a deadline in December to reach an agreement banning subsidies that fuel such industrial fishing, the technology could give African officials and other regulators an important tool to combat the marine crime that robs their citizens of food, livelihoods, and in some cases, their lives.

This map tracks commercial fishing vessels at sea in near real-time.
Blue dots indicate the presence of fishing vessels detected using AIS data, and yellow dots indicate vessels detected using Panama’s vessel tracking data.
The timeline at the bottom shows the total number of fishing hours over any given period.
Click play to follow fishing activity over the past 8 years, and hover over/tap any part of the map to reveal more information.

Global Fishing Watch
This map tracks commercial fishing vessels at sea in near real-time.
Blue dots indicate the presence of fishing vessels detected using AIS data, and yellow dots indicate vessels detected using Panama’s vessel tracking data.
The timeline at the bottom shows the total number of fishing hours over any given period.
Click play to follow fishing activity over the past 8 years, and hover over/tap any part of the map to reveal more information.

“People are getting poorer,” says Dyhia Belhabib, the lead author of the paper and the principal fisheries investigator at non-profit Ecotrust Canada.
“Every year, 300,000 jobs are lost to illegal fishing.”

She noted that overseas fleets often target small foraging fish that are a staple of some African diets.
“The very fish that are caught to feed farmed salmon in the West are eaten by people in Africa, and often it’s their only source of protein.”

Belhabib’s research has also found that collisions between small fishing boats and industrial trawlers illegally operating in nearshore waters has resulted in the deaths of hundreds of African fishers.
“We hope countries will use this data to hold their own fleets accountable, whether we’re talking about China or Europe,” she says.

How does the system work?

The International Maritime Organisation requires vessels of a certain size to carry a transponder that broadcasts their live location to satellites.
This Automated Identification System (AIS) is designed to help ships avoid collisions.
Global Fishing Watch taps this and other location data to identify and track fishing boats across the globe, then analyses their movements to determine if they’re acting suspiciously.

“This is the first time we’ve looked at likely illegal activity around an entire continent,” says David Kroodsma, director of research and innovation at Global Fishing Watch.
“The thing I like about this study is that it’s part ‘Big Data’ and part really detailed policy research.
When you combine those things you can say something really useful.”

Belhabib and her colleagues reviewed laws and regulations governing inshore fishing in 33 African nations that border the Atlantic and Indian oceans, identifying zones where foreign industrial trawlers were partially or completely banned.

Then, to determine country of origin, Global Fishing Watch compared the AIS vessel locations between 2012 and 2016 with official ship registries.
That accounted for 75% of the trawlers fishing in prohibited waters.
The researchers then identified the remaining 25% as industrial fishing boats using an algorithm to analyse their movements.
The algorithm, which recognises fishing behaviour, is more than 90% accurate in spotting trawlers, according to the paper.

In Africa, 5.9% of industrial fishing occurred where it is prohibited, and 3% occurred where it was partially banned.
“I was really expecting much more than that,” says Belhabib.

However, the numbers were significantly higher in certain countries.
In addition to Somalia, where 93% of large-scale fishing occurred in restricted waters, 46% of such fishing was detected in Eritrea and 38% in Equatorial Guinea.

The researchers noted that those numbers may be conservative, given that trawler captains are known to turn off their AIS transponders when fishing illegally.

Why is this data needed?

Trying to ascertain who is actually profiting from illegal fishing is part of the challenge.
In Ghana, for instance, 28% of industrial fishing between 2012-16 occurred in waters where trawlers were banned.
Researchers found that 95% of those big boats were registered to Ghanaian companies.
But a 2019 China Dialogue Ocean investigation revealed that Chinese corporations are the ultimate beneficial owners of most of them.

“In our analysis, Somalia, Equatorial Guinea, Eritrea and Ghana, where vessels spend a significant amount of their time fishing in prohibited zones, have either a limited capacity to monitor their coastal waters (Somalia and Eritrea), or have limited willingness” because of relationships with foreign fleets, the researchers wrote.

Isabel Jarrett, manager of the Pew Charitable Trusts programme to reduce harmful fishing subsidies, hopes the new research puts pressure on WTO negotiators to reach a deal to prohibit subsidies that promote illegal, unreported and unregulated (IUU) fishing.

“It provides further evidence for the need for ambitious fishing subsidies rules,” she says.
“A lot of IUU activity is taking place off the coast of Africa by fleets largely from developed and big developing countries.
If you have an agreement on subsidies, you’ll no longer encourage that type of activity.”

 Source: A global dataset on subsidies to the fisheries sector, Data in Brief, 2019

The WTO has been negotiating the harmful fishing subsidies ban for nearly 20 years.
Jarrett attributes the failure to meet its December deadline in part to the resignation in July 2019 of the chair of the negotiations.
His successor was not chosen until November.

A new deadline has been set for June 2020, when the organisation holds its biennial ministerial conference in Kazakhstan.
The WTO operates on consensus, meaning that all 164 member states must agree on the terms of a fishing subsidies ban.

Still, Jarrett is hopeful an agreement will be struck, noting that the pressure will be mounting as the UN will be holding its second Ocean Conference in Lisbon, Portugal, the week before the WTO meeting begins.
And China, a significant player in the WTO negotiations, is hosting a high-profile meeting of the UN Convention on Biological Diversity in October, giving it further impetus to show environmental leadership by helping conclude the fishing subsidies negotiations.

The monitoring method deployed by Global Fishing Watch could also prove key in helping ensure compliance with a fishing subsidies agreement.
Kroodsma says the organisation’s maps are updated every three days but that it could be possible to detect illegal fishing in near real-time.

“It shows the real promise of this type of technology,” says Kroodsma.
“Developing countries need cheap ways to monitor their waters.”

Links :

Wednesday, February 12, 2020

Norway (NHS) layer update in the GeoGarage platform

145 nautical raster charts updated

A huge iceberg just broke off West Antarctica’s most endangered glacier


As anticipated, Pine Island Glacier, known as PIG for short, in Antarctica has just spawned a huge iceberg. At over 300 sq km, about the size of Malta, this huge berg very quickly broke into many ‘piglet’ pieces the largest of which is dubbed B-49.
Thanks to images the Copernicus Sentinel satellite missions, two large rifts in the glacier were spotted last year and scientists have been keeping a close eye on how quickly these cracks were growing.
This animation uses 57 radar images captured by the Copernicus Sentinel-1 mission between February 2019 and February 2020 (the last frame is from yesterday, 10 February 2020) and shows just how quickly the emerging cracks grew and led to this calving event. 
courtesy of ESA

From National Geographic by Madeleine Stone

Huge blocks of ice regularly shear away from Antarctica’s ice shelves, but the losses are speeding up.

On the ice-covered edge of a remote West Antarctic bay, the continent’s most imperiled glaciers threaten to redraw Earth’s coastlines.
Pine Island Glacier and its neighbor Thwaites Glacier are the gateway to a massive cache of frozen water, one that would raise global sea levels by four feet if it were all to spill into the sea.
And that gateway is shattering before our eyes.

Over the weekend, the European Space Agency’s Sentinel satellites spotted a significant breakup, or calving event, underway on Pine Island Glacier’s floating ice shelf.
A series of rifts that satellites have been monitoring since early 2019 grew rapidly last week.
By Sunday, a 120 square-mile chunk of ice—a little under three San Franciscos in size—had broken off the glacier’s front.
It quickly shattered into a constellation of smaller icebergs, the largest of which was big enough to earn itself a name: B-49.

This image shows two cracks in the Pine Island Glacier seen by the Copernicus Sentinel-2 satellite on September 14, 2019.
courtesey : ESA

For Pine Island, it’s the latest in a string of dramatic calving events that scientists fear may be the prelude to an even larger disintegration as climate change thaws the frozen continent.
With temperatures on the Antarctic Peninsula spiking to a record 65 degrees Fahrenheit last week, the signs of rapid transformation are becoming difficult to ignore.

“What is unsettling is that the daily data stream [from satellites] reveals the dramatic pace at which climate is redefining the face of Antarctica,” said Mark Drinkwater, senior scientist and cryosphere specialist at the European Space Agency, in a press release.

Glaciers are frozen rivers that channel larger, land-bound ice sheets into the ocean.
Pine Island is Antarctica’s most vulnerable.
Since 2012, the glacier has been shedding 58 billion tons of ice a year, making the biggest single contribution to global sea level rise of any ice stream on the planet.

The latest calving event is the eighth of the past century for Pine Island, with prior calvings occurring in 2001, 2007, 2011, 2013, 2015, 2017, and 2018, according to Copernicus.
The intervals between the events seem to be getting shorter, another symptom of the glacier’s unhealthy state.

“The events of the past five to 10 years seem to be exceptional for the area compared to the retreat in the past 70 years,” Bert Wouters, a satellite remote sensing expert at TU Delft in the Netherlands who has been monitoring Pine Island Glacier closely, writes in an email.

“Although iceberg ‘calving’ from floating Antarctic ice shelves is a natural, ongoing process, the recent calving event of Pine Island Glacier was particularly large and such calving events from this glacier appear to be becoming more frequent,” says Alison Banwell, a glaciologist at CIRES, University of Colorado, Boulder.



Iceberg B-49 as recently calved from Pine Island Glacier
as observed by CopernicusLandSentinel2 satellite
courtesy of  @StefLhermitte& @i_ameztoy

The recent breakup, which was bigger than those in 2017 and 2018 but smaller than iceberg calvings in the early 2000s, according to Wouters, might have been partly driven by mild weather last winter.

But as with other recent calvings at Pine Island and other West Antarctic glaciers, the primary driver was the influx of warm subsurface water into the Amundsen Sea Embayment, which is causing ice to melt from below.
That, in turn, is related to shifting wind patterns that are pushing warm, deep ocean water onto the continental shelf.
It’s also in line with the bigger picture of climate change.

Calving events like this don’t contribute to sea level rise directly, because floating ice shelves are already displacing water.
However, outlet glaciers like Pine Island act as a brake on the flow of land-bound ice, which does raise sea levels as it empties into the sea.
As Pine Island’s ice shelf weakens, so does this buttressing force, which can hasten the flow of ice from the land.

Indeed, Pine Island’s ice has been flowing out to sea faster since the 1990s, with the ice stream now moving at a rate exceeding 35 feet per day, according to Drinkwater.
In the lead-up to its recent calving, the glacier was moving even more rapidly than usual.

Worryingly, some scientists believe Pine Island Glacier, and its neighbor Thwaites, which also empties into Pine Island Bay, are inherently unstable due to a quirk of geometry.
The so-called grounding line where the glaciers make contact with bedrock lies below sea level, meaning it’s vulnerable to attack by warm ocean water.
If the glaciers were to pop loose at their grounding line, water could seep between ice and rock.

Because the bedrock slopes downward as one travels inland, this could result in an increasingly thick, unstable ice shelf that produces bigger and bigger icebergs, ultimately leading to runaway collapse.
Ominously known as marine ice cliff instability, this scenario has the potential to trigger rapid losses of ice across West Antarctica.



Part of Iceberg A68 | Image 50km x 30km approx.
@CopernicusEU Sentinel2 2020-02-09

The scenario is glaciological nightmare-fuel, but the jury is still out on how likely it is.
In the hopes of finding answers, scientists with the International Thwaites Glacier Collaboration recently used a hot water drill to bore a hole through hundreds of feet of ice in order to access Thwaites’ grounding zone.

A series of instruments, including a small, tube-shaped robot called Icefin, were deployed to collect data and capture the very first footage of this mysterious realm.
This data will help fill in key gaps in scientists’ understanding of grounding zone melt dynamics, allowing them to better predict future changes, including the likelihood of runaway collapse.

Meanwhile, Pine Island Glacier seems to have stabilized for now.
The latest returns from the MODIS instrument on NASA’s Terra satellite suggest the western portion of the recently calved ice, including the largest iceberg, has rapidly rotated out into Pine Island Bay, according to NASA glaciologist Christopher Shuman.
The eastern half, including many smaller shards of ice, is following suit.

Shuman says that the breakup of Pine Island’s latest iceberg into many small shards “suggests just how ‘weak’ the floating ice tongue of [Pine Island] has become.” That, combined with the ice front’s current, seemingly unstable configuration, suggests that there will be more disintegration soon.

“All in all, not good news for the inland ice flowing out from Pine Island Glacier,” Shuman says.
Drinkwater of Copernicus agrees.
“The event will undoubtedly evolve,” he says.

Links :