Monday, March 18, 2019

Norway (NHS) layer update in the GeoGarage platform

133 nautical raster charts updated

Wilhelmsen and Airbus trial world’s first commercial drone deliveries to vessels at anchorage


From Wilhelmsen by

Launching this week in partnership with Airbus, Wilhelmsen’s shore-to-ship Singapore pilot project, marks the first deployment of drone technology in real-time port conditions, delivering a variety of small, time-critical items to working vessels at anchorage.

Lifting off from Marina South Pier in Singapore with 3D printed consumables from Wilhelmsen’s onshore 3D printing micro-factory, the Airbus Skyways drone navigated autonomously along pre-determined ‘aerial-corridors’ in its 1.5km flight to Eastern Working Anchorage.
The drone landed on the deck of the Swire Pacific Offshore (SPO)’s Anchor Handling Tug Supply (AHTS) vessel, M/V Pacific Centurion and deposited its 1.5kg cargo without a hitch before returning to its base.
The entire delivery, from take-off towards the vessel, to landing back at base, took just ten minutes.


Wilhelmsen and Airbus Trial Drone Deliveries to Singapore Anchorage

Though small drone delivery trials from tugboat to ship have been conducted before by a number of shipping companies and service providers, shore-to-ship delivery of this range and scope has never been explored, prior to this trial.

Commenting on the successful first delivery flight, Marius Johansen, VP Commercial, Wilhelmsen Ships Agency says, “The now proven, seamless operation of drone deliveries from shore-to-ship, in one of the world’s busiest ports, proves the hard work, investment and faith we, and indeed our partners, placed in the Agency by Air drone delivery project over the past two years was not misplaced”.

Operations began with a Toolbox Talk with the Wilhelmsen, Airbus and SPO crew to ensure that the risk assessment was understood by all parties.
With final safety checks completed, Wilhelmsen’s Marina South Pier team loaded the drone.
Supported by spotters stationed on board the vessel deck to ensure the safety of the crew and vessel, the drone took off towards the vessel, landing on the dedicated area on the main deck where the parcel was retrieved by the officer on board.


Offering a more cost effective, quicker and safer means of delivering, small, time-critical items to vessels, Wilhelmsen sees delivery by drone, rather than launch boat, as part and parcel of their continued evolution of the agency business.


Johansen adds, “Delivery of essential spares, medical supplies and cash to Master via launch boat, is an established part of our portfolio of husbandry services, which we provide day in and day out, in ports all over the world.
Modern technology such as Unmanned Aircraft Systems (UAS), is just a new tool, albeit a very cool one, with which we can push our industry ever forward and improve how we serve our customers”.

Less labour dependent than delivery via launch, autonomous Unmanned Aerial Vehicles (UAVs) can potentially reduce delivery costs by up to 90% in some ports and have a smaller carbon footprint than launch boats.

SPO has been an important partner during the detailed final preparation and operational testing of the drone, with the provision of its Anchor Handling Tug Supply (AHTS) vessels.


“Swire Pacific Offshore is excited to partner with Wilhelmsen in supporting the first shore-to-ship drone pilot project with our vessel, M/V Pacific Centurion.
Wilhelmsen and SPO share a longstanding working partnership.
We’re confident that this pioneering move of Wilhelmsen will create new opportunities for future collaborations with SPO, improve work efficiency and drive cost savings for players in the offshore industry,” says Duncan Telfer, Commercial Director, SPO.

Prior to the official launch of this shore-to-ship commercial drone delivery, SPO’s Anchor Handling Tug Supply Vessel (AHTS).
M/V Pacific Rapier has also facilitated the earlier pre-trial session in Singapore waters.

Signing a unique MOU with aeronautics company Airbus in June 2018, Wilhelmsen was tasked with setting up the necessary maritime and port operations, gaining relevant approvals from port authorities, with Airbus the overall Skyways system architect and provider, contributing its expertise in aeronautical vertical lift solutions to develop the UAS for shore-to-ship deliveries.

"We are thrilled to launch the first trial of its kind in the maritime world.
Today’s accomplishment is a culmination of months of intense preparation by our dedicated team, and the strong collaboration with our partner, as we pursue new terrain in the maritime industry," says Leo Jeoh, Airbus Skyways Lead.


The ongoing pilot trial will for now, focus on offshore supply vessels at anchorage 1.5km from the pier.
With operational safety as a priority, flights will be limited to this distance for the time being, before the flight range is gradually ­­extended to as far as 3km from the shore.

 Marina South Pier with the GeoGarage platform (UKHO/MPA nautical chart)
­­

The Maritime and Port Authority of Singapore (MPA) is facilitating the trial, which started in late November 2018, through the interim use of Marina South Pier as the launching and landing point for Airbus’ delivery drone.
At the same time, MPA has designated anchorages for vessels to anchor off Marina South for the trial.
The Civil Aviation Authority of Singapore is also working with Wilhelmsen and Airbus to ensure safety of the trials.

A number of customers have already committed to the project including, Optimum Marine Management, Fleet Management, Zeaborn Ship Management, Pola East, SK Shipping, and sister company Wilhelmsen Ship Management.

Links :

Saturday, March 16, 2019

A stunning art installation showing projected sea-level rise

Interactive site specific light installation located @ Outer Hebrides

From Medium by World Ocean Observatory

Lines (57° 59′ N, 7° 16’W) — a breathtaking art installation in Scotland brings attention to projected sea-level rise by showing the projected height of sea-level rise

Recent studies in Science and other journals have shown that existing projections of sea-level rise have been extremely conservative.
New projections, in light of ocean warming that is 40% higher than previously estimated, show that sea-level rise will become a challenge much sooner than expected.
CNN and the New York Times have reported extensively on the effect of sea-level rise on the low-lying Marshall islands, a US territory whose president last week announced a new plan to raise the islands, in order to avert the worst.
These news reports rarely receive the attention they deserve, due to the nature of our current political climate in the U.S. and worldwide.


However, two Finnish artists this week punched through the news cycle with stunning images of their new art installation, showing a brightly lit line mounted on buildings in a town in Scotland, lying on one of the Hebridean islands.


Pekka Niittyvirta and Timo Aho describe their artwork:​
“By the use of sensors, the installation interacts with the rising tidal changes; activating three synchronized light lines by the high tide.
The work helps us to imagine the future sea level rise in undefined period of time, depending on our actions towards the climate warming.


The installation explores the catastrophic impact of our relationship with nature and its long term effects.
The work provokes a dialogue on how the rising sea levels will affect coastal areas, its inhabitants and land usage in the future.

 Loch Maddy with the GeoGarage platform (UKHO chart)

This is specifically relevant in the low lying island archipelagos like the Uist in the Outer Hebrides off the west coast of Scotland, and in particular to Taigh Chearsabhagh Museum & Arts Centre in Lochmaddy where the installation is situated.
The centre cannot develop on its existing site due to predicted storm surge.


We will let these stunning images speak for themselves, a terrific, terrifying example of breathtaking art in the service of a powerful, vital message highlighting — it seems appropriate to say — how the future of the ocean is inextricably tied to our own.
 

Friday, March 15, 2019

Something smells fishy: Scientists uncover illegal fishing using shark tracking devices

Transmitters for broad-scale tracking are usually placed under the dorsal fin of the shark, while acoustic tags are often implanted.
These enable fine-scale spatial monitoring of reef sharks with high fidelity to their tagging reef that remain within range of the receivers.
The sudden disappearance of 15 tagged reef sharks indicated an atypical event, in this case an illegal fishing operation.
Image by David Curnick, courtesy of ZSL.
From Mongabay by Sophie Manson
  • Sharks become unlikely detectives as marine ecologists discover a link between their acoustic telemetry data and the presence of illegal fishing vessels.
  • Researchers acoustically tagged 95 silvertip and grey reef sharks to assess whether the creation of the British Indian Ocean Territory (BIOT) Marine Protected Area was helping to protect these species.
  • Detailed in a recently released paper, the almost simultaneous loss of 15 acoustic tags coincided with the capture of two illegal fishing vessels, arrested for having 359 sharks on board.
  • While helping to map sharks’ movements around the reef, scientists expect that they will be able to use data collected from the acoustic tags to predict the presence of illegal fishing vessels.
In April 2015, researchers headed out to the Chagos Archipelago in the Indian Ocean to service acoustic receivers they had dotted around the archipelago, and to download tag data from the 95 grey reef and silvertip sharks they had tagged a year prior.
Little did they know that over the course of 10 days during the previous December, 15 of their tagged individuals had been illegally fished.

 Illegal fishing has increased in one of the worlds largest Marine Protected Area (MPA) since it was set up in 2010.
The Chagos Archipelago, otherwise known as the British Indian Ocean Territory, created among controversy, boasts the BIOT Marine Protected Area comprising of 210,040 square miles of marine habitat, including an archipelago of seven atolls, at least 70 islands, and some of the world's most pristine coral reefs.
Researchers had previously recorded sharp declines in reef shark abundances .which the creation of the MPA had hoped to reverse.
But research now suggests that the removal of reef fish has increased since 2013, and that sharks are being deliberately targeted.
Between 2010 and 2015, 91% of illegal fishing vessels in the BIOT had sharks on board, and when present, sharks made up 79% of the catch.
Over 2,000 sharks may have been caught in December 2014 alone, including more than 200 grey reef sharks and almost 900 silvertip sharks.
This would have constituted a loss of one-third of the shark population in that part of BIOT.
However, conservationists believe technology will enable conservation to make significant progress in coming years.

The Chagos Archipelago, otherwise known as the British Indian Ocean Territory (BIOT), boasts one of the largest marine reserves in the world.
The BIOT Marine Protected Area was created in 2010 and comprises 544,000 square kilometers (210,040 square miles) of marine habitat, including an archipelago of seven atolls, at least 70 islands, and some of the world’s most pristine coral reefs.

Salomans Atoll in the Chagos Archipelago: the atolls are believed to serve as nurseries for juvenile sharks.
Image by Anne Sheppard.

The British Government created the reserve to conserve the archipelago’s biodiverse ecosystems, amidst concerns that increased fishing pressure from neighboring countries, including India and Sri Lanka, would decimate populations of important marine species.
The sheltered atolls of BIOT attract several species of pelagic and reef shark; here, mothers can give birth without their young being immediately threatened with predation, and juveniles can learn to hunt in lagoons before heading into the open ocean.

Researchers have been recording shark populations in BIOT since the 1970s, and it has become clear that the numbers they are witnessing now are not what they should be.

“[Researchers] recorded sharp declines in reef shark abundances… which the creation of the marine reserve in 2010 hoped to reverse,” said David Tickler, a researcher from the University of Western Australia studying the effects of illegal shark fishing in the Indian Ocean.

Sudden declines in populations of any species are never good news; however, sharks are particularly vulnerable to these changes due to their ambling life history.
“Sharks are very slow-growing,” David Jacoby, a Zoological Society of London (ZSL) researcher studying shark social networks in BIOT, told Mongabay.
“They’re very late to mature and they have very few offspring, so if you suddenly remove a large proportion of the population that are aggregating… then the recovery is long and the impacts can be huge.”

Acoustic telemetry of high-fidelity reef sharks

Acoustic telemetry is becoming an increasingly popular method of data collection for marine conservationists.
Researchers from ZSL, the University of Western Australia, and the Stanford University Hopkins Marine Station have collaboratively been using acoustic transmitters to track the movements of reef sharks around the marine reserve since 2013.

Researchers from the Zoological Society of London (ZSL) fit a silvertip shark in the British Indian Ocean Territory (BIOT) with a tracking tag.
Acoustic tags emit unique sound pulses that underwater receiving units record, along with the tag’s unique code, a time stamp, and optional environmental data.
Acoustic data can suggest residency patterns within the network of receivers, with gaps in detection assumed to be absences from the area.
Image by David Curnick, courtesy of ZSL.

“Acoustic tags transmit a series of sound pulses (a bit like Morse code), which are picked up by hydrophones [receivers] to locate the position of a tagged animal,” Tickler said.
“Depending on local conditions around a hydrophone, accuracy of position fixes can be a few hundred meters… [Therefore] acoustic telemetry is much better suited to relatively resident animals, such as reef sharks, whose movements are typically too short to be reliably detected with satellite tags.”

After rigorous development and strict ethical reviews, Tickler and colleagues acoustically tagged 47 grey reef sharks (Carcharhinus amblyrhynchos) and 48 silvertip sharks (Carcharhinus albimarginatus) in BIOT.
They monitored the sharks throughout 2013-2014.

“When we were putting these tags in, we wanted to find out what areas within the marine protected area and the archipelago are more or less important at certain times of the year than others,” said David Curnick, a ZSL researcher investigating the relationships between marine reserves and sharks.
“Seeing whether there is social clustering both in time and space, you can then direct monitoring [of illegal activity] and enforcement to these areas.”

Illegal fisheries target sharks

In 2015, MRAG Ltd. published a paper detailing the extent of illegal fishing in BIOT.
The results suggested that the removal of reef fish has increased since 2013, and that sharks are being deliberately targeted.
Between 2010 and 2015, 91 percent of illegal fishing vessels in BIOT had sharks on board, and when present, sharks made up 79 percent of the catch.

These data concur with global fisheries statistics; the mass-capture of endangered sharks has been recorded off the coast of Argentina, along the Mid-Atlantic ridge, and in the Galápagos Marine Reserve where 6,000 sharks were found onboard one vessel.
These jaw-dropping figures are fueled by several factors; however, the demand for shark fin soup is by far the largest threat facing shark populations.

Shark fin soup is a traditional Chinese dish often served at weddings and other special occasions in China.
The soup usually contains meat from the dorsal fin of the shark, which gives the soup its texture, while other flavorings, such as chicken, provide the taste.

Since 2011, following a star-studded campaign, shark fin soup consumption in China has decreased by a staggering 80 percent.
However, growing popularity of the dish in other areas of Southeast Asia, such as Thailand and Vietnam, could indicate shark fin’s disassociation from the expensive, exclusive meat it once was, and represent an increase in its availability, thus making the policing of biodiverse areas like BIOT even more critical.

Acoustic telemetry data uncover illegal fishing

Collecting data through wildlife tracking does have limitations, including their inevitable malfunction, damage to the tag, or the migration or predation of a tagged animal.
Even though acoustic tags have a life expectancy of up to 10 years, a certain degree of tag loss is expected.

Before April 2014, shark researchers in BIOT saw an average loss of 4.1 tags per month.
However, in December 2014, 15 tags stopped recording data over the course of ten days.
The scientists investigated these potential causes of tag loss, but all seemed unlikely given the baseline tag loss rate that had been established.

“We’d heard about a big illegal fishing incident from the fisheries officer in BIOT during the April 2015 expedition,” Tickler said.
“We didn’t think much more about it until we plotted out the tag detections and saw a big drop off in activity during the same month.
When we looked at the sighting and arrest reports from the marine reserve’s patrol boat, we found the sightings had all occurred just after our tags stopped transmitting.”

The scientists’ graph displaying the trend in tag loss rate from April 2013 to April 2015.
In December 2014, there is a sudden drop-off, which represents the 15 tags that stopped recording data.
Image is Figure 1 of Tickler et al (2019), “Potential detection of illegal fishing by passive acoustic telemetry” in Animal Biotelemetry, CC 4.0

The BIOT patrol vessel encountered 17 suspected illegal fishing vessels in December 2014, which coincided with the dates the tags stopped transmitting.
Authorities caught two of the vessels and found a combined catch of 359 sharks on board; grey reef and silvertip sharks made up half their catch.
Using historical fisheries data, and assuming that this was a typical catch, over 2,000 sharks may have been caught in December 2014 alone, including more than 200 grey reef sharks and almost 900 silvertip sharks.
This would have constituted a loss of one-third of the shark population in that part of BIOT.

After modelling the fishing events and tag losses, the team were able to prove that there was a link between the loss of 15 tags and the illegal fishing vessels found in December 2014.
“Our study showed that a small number of tags (fewer than 50) was sufficient to detect an illegal fishing event,” Tickler added, “most likely because we were monitoring one of the key target species of the illegal fishery.”

Using acoustic tags to tackle illegal fishing in BIOT

The research team in BIOT showed that by combining acoustic telemetry data, historical fisheries data, and recorded illegal activity, conservationists can successfully implicate illegal fishing vessels.
However, acoustic technology has a way to go before it can be used as a routine tracking method for illegal activity in marine reserves.

“In this case we were only able to analyze the data several months after the tagged animals had been caught,” Tickler said.
“New tag technologies being developed will allow tags to report their location the instant they are removed from the water, pinpointing fishing and allowing direct interception or observation of the vessels.”

Until data can be uploaded from tags faster than they are currently, the extent of illegal fishing will remain elusive.
But the data the team have and are continuing to collect are already helping them to understand where sharks are going to be and when, which is essential if marine reserves are to reach their full potential.

“If we can identify ecological hotspots of shark aggregations or areas where you see high movements between specific areas, and we know at what time of year they occur,” said Jacoby, “then we can direct the enforcement vessels to be there at that time on the off-chance that fishermen also have that information and are purposely targeting that area.”

ZSL researchers release a silvertip shark in BIOT after fitting it with an acoustic tag.
Advances in electronic tagging may help law enforcement reduce illegal fishing in protected areas by remotely detecting fishing events as they happen.
Image by David Curnick, courtesy of ZSL.

With acoustic technology improving each year, the potential for it to help conservationists monitor and detect illegal fishing in marine reserves is increasing.
Alongside acoustic technology, ZSL researchers are carrying out research to evaluate the effectiveness of sensors borne by aerial and aquatic drones, paired with the use of satellite imagery, to identify illegal activity.

Tickler is optimistic that technology will enable conservationists to make significant progress in coming years.
“Managing our impact on marine ecosystems will be a vital challenge in the coming decades, and technology that increases transparency and fosters more sustainable use of the ocean will be needed to ensure we do not exceed its limits,” he said.
“Using animals as sentinels, both to detect illegal activity and to monitor environmental conditions, extends our capabilities and reach, making us more effective stewards of our oceans.”

Links :