Tuesday, February 5, 2019

Alphabet's loon sets its sights on the satellite industry

Similar to Loon’s balloons, NGSO satellites are constantly moving relative to one another and the Earth below.

From The Verge by Nick Statt

Satellite company Telesat will use Loon’s networking software to manage low Earth orbit constellations

Since its secret beginning in 2011, Loon has been pursuing the seemingly quixotic task of bringing internet to the world’s most remote corners via stratospheric helium balloons.
Now, after nearly a decade, the Alphabet-owned company is embarking on a new chapter, and it involves acknowledging it cannot accomplish the immense task of bringing billions of people online on its own.

Today, Loon is announcing a partnership with Canadian telecommunications company Telesat in a deal that will see Loon’s custom software service for managing its LTE balloon fleet be put to use controlling Telesat’s new constellation of low Earth orbit satellites.
It’s part of Loon’s realization that no one solution will get internet everywhere across the globe and that its technology can benefit a major player in an industry it once viewed as a potential competitor.

Telesat is launching a state-of-the-art satellite constellation of highly advanced satellites in low-earth-orbit (~1,000 km from earth; ~35 times closer than traditional satellites) that will seamlessly integrate with terrestrial networks.
The global network will deliver fiber quality throughput (Gbps links; low latency) anywhere on earth.
This is a highly flexible system that dynamically allocates capacity where there’s demand, thus maximizing system efficiency.

“The opportunity is bigger than any one of us,” says Loon CEO Alastair Westgarth, who explains that Loon came to learn that the solutions to some of its biggest hurdles were not just about developing better technology, but also about finding the right partners.
“During that learning process, we decided that we needed to seek collaboration.” While Loon has worked closely with telecoms to source internet access for its balloon networks in foreign countries, the company has never before licensed out proprietary technology as a packaged software service.

The partnership will bring Loon a new line of revenue, turning its software for controlling non-stationary aerial networks into a viable product for the satellite industry, which is now eyeing the lower portion of Earth’s atmosphere as a lucrative and untapped market.
Loon has spent a majority of its existence as an Alphabet-funded project developing this software, and it’s become an instrumental system for controlling the network traffic for Loon’s LTE service in areas like Brazil, Peru, and elsewhere around the globe where the company has performed field tests.

As a result of its successful work around the globe, and in helping bring Puerto Rico back online after Hurricane Maria, Loon has become increasingly focused on becoming a proper business, too.
Loon started life as one of Google’s moonshot projects, like the Waymo self-driving car program, but it was spun out into a standalone company under Alphabet last year, roughly a year and a half after Westgarth, a telecom industry veteran, took over as CEO.

Yet, Alphabet’s more experimental businesses cost it billions of dollars per year, and as a result, the companies that get spun out come under pressure to prove their worth and turn a profit.
At Access, the telecom unit that encompasses Google Fiber, and drone delivery outfit Project Wing, executive turnover has been frequent, while smart home company Nest has lost both its co-founders and was folded back into Google last year.
Alphabet’s solar-powered internet drone division, once a kind of sister project to Loon, was shut down in 2017.
Loon, however, remains one of the rare Alphabet companies now plotting a clear path toward becoming a viable, self-sustaining venture.

 source : Alphabet

The Telesat partnership is the second commercial deal for Loon, after the company announced plans to help expand mobile networks for smartphone users in Kenya earlier this year.
Broadly speaking, these are Loon’s first steps in commercially addressing what it sees as a global hurdle for connecting the planet.
Around 3.5 billion people, or a bit under half the world’s population, don’t have access to the internet, according to the 2018 Global Digital report.

As it stands today, current options for bringing remote areas online, like geostationary satellites that sit more than 20,000 miles above the surface, provide ample coverage area, but suffer from high-latency and sluggish connection speeds.
They’re also immensely difficult and expensive to maintain.
For companies like Loon and Telesat, newer solutions ranging from satellites in low Earth orbit — a more cost-effective and lower latency portion of space — to stratospheric balloons and airships are necessary to begin bridging the gap.
And it’s no longer about providing a single, one-size-fits-all solution, but a patchwork of different approaches all targeting different segments of the connectivity problem.

Not only is internet access critical to upward mobility in developing countries, but its lack of availability is also an impediment to the future success of a Silicon Valley giant like Google.
While Google is technically another Alphabet subsidiary, many of the companies outside the Google bubble can be seen as pursuing goals that the search giant stands to benefit from.
And Alphabet as a whole can only grow and continue thriving — and writing the healthy paychecks that keep the lights on at companies like Loon — if more internet users come online and start using ad-supported web services like Google search and Gmail.

Going forward, Westgarth says Loon will continue to push more of its technology into the commercial space and telecom sectors, as it sees fit.
“As we develop a capability — some intellectual property or some tech applicable outside Loon — we will make a determination,” he says.
“Do we commercialize it? If yes, how do we find a partner and license it?”

Because balloons move, the network of links between them must change constantly in order to deliver sustained connectivity below.

The tech being licensed to Telesat is what Loon is calling a “temporal-spatial” SDN, short for software-defined network.
It was developed to manage Loon’s fleet of LTE balloons using learnings from Google’s years of experience building custom data center architectures and management tools.

Such a technology was needed because Loon’s balloons shift in the sky depending on weather conditions, the locations of other balloons, the direction each balloon is facing, and a number of other factors that influence the stability of the network and its connection to people’s smartphones on the ground.
At any given moment, Loon’s software is automatically adjusting the shape of the network to manage the data passing between each node and ultimately beaming down to and up from the surface of the Earth.

In a normal cell network, the cell towers are stationary, and “you’re the only thing moving around,” explains Sal Candido, Loon’s head of engineering.
With Loon, however, “it was pretty apparent early on that our towers would be moving around.” According to Candido, there didn’t exist a technology that could manage such a complex task.
So Loon decided to build it.

The task was not easy — Loon’s LTE balloons operate at around 20 kilometers, or more than 65,000 feet, in the sky.
They cannot be adjusted on the fly; you can’t send a technician into the stratosphere to fiddle with the balloon’s antennas.
So the team began researching the way aerospace networks were first set up by organizations like NASA.
It’s something Loon’s Brian Barritt, a networking expert and former consultant for the NASA Glenn Research Center, had unique insight into.

“A lot of this started off with a general solution trying to support many different types of aerospace networks.
We looked at a lot of things...
planes, satellites,” says Barritt, who joined Google in 2014 and now acts as the technical lead for the temporal-spatial SDN product.
“From the start, we were trying to build something that would solve this class of problem: a high-throughput network where people are moving and the network is moving.”

The result was an unprecedented network architecture, or what the Loon team nicknamed “Minkowski,” after the German mathematician Hermann Minkowski that translated Albert Einstein’s theory of relativity into a geometric representation of space-time.
Its unique characteristic is that it uses software to virtually control a network that shifts both in its physical orientation and across time simultaneously, all while the physical recipients of the connection are also moving on the ground, on a ship at sea, or even on an airplane traveling 550 mph.



To connect the balloons together in any given deployment area, Loon needs to set up a communication link between a ground station and one of its vehicles.
The custom software system then transfers that link to other balloons using a set of three antennas affixed to rotating gimbals on each balloon’s payload.
That payload also holds the networking hardware, helium source, and the means by which the balloon can stay powered in the air using a mix of solar energy and batteries.

The SDN manages that whole process by predicting which balloons will handle which requests and how best to send that data across the network.
It then automates the morphing of the “topology” of the network, essentially its physical arrangement, as well as scheduling those changes multiple minutes out and predicting how it will need to adjust going forward.
In that way, a Loon network can reliably mimic a terrestrial LTE one, even as it floats in the sky.
Back in September of last year, Loon announced it was able to string one such connection across seven balloons spanning 621 miles, a feat that would have been impossible without the aid of Minkowski.

The visual interface of Loon’s temporal-spatial SDN software that Telesat will use to manage low Earth orbit satellites.

In developing the software, Loon discovered that the product could be especially useful to satellite companies that are expanding into low Earth orbit, where satellites shift around in space.
Because they’re closer to the surface of the planet, these satellites can provide faster connections, and they’re also cheaper to launch.
But that area of the atmosphere requires that the satellites, like the International Space Station, constantly orbit the Earth to avoid reentry.

In that way, LEO satellites start to resemble Loon balloons, although they’re much, much higher in the sky.
(An LEO satellite sits approximately 35 times closer to the Earth than a standard geostationary one, but roughly 50 to 100 times higher than a Loon balloon.) “The same type of technology we used to manage the mobility of the balloon makes a ton of sense for these non-geostationary satellite constellations,” explains Candido.

Telesat doesn’t plan to beam down LTE to your average smartphone user, at least not in the near-term.
Instead, the company plans to use its LEO satellites primarily to provide connections to remote areas of Earth, such as research vessels in the ocean and cruise ships as well as for in-flight Wi-Fi and other forms of midflight satellite connections.
(Interestingly, Telesat is partnering with Amazon’s Blue Origin to launch its LEO satellites, whereas Alphabet is an investor in SpaceX, both a Blue Origin competitor for space travel and Telesat competitor due to SpaceX’s planned Starlink constellation.)

But for Loon, this is a first step in helping position its technology to bring universal, global connectivity closer to reality.
One day in the future, Barritt envisions these stratospheric internet stations could become the backbone of a new kind of aerial internet infrastructure.
“They could be used to handle urban densification, to work with satellites and different generation of Loon balloons, high-altitude solar gliders or airships,” he says.
“All interoperable.”

Of course, in that vision of the future, it’s Loon software that becomes the glue that holds it all together.
It’s a fittingly optimistic dream for a former moonshot project of Alphabet’s X lab that, all these years later, looks like it’s finally gotten off the ground.

Links :

Monday, February 4, 2019

Antarctic Weddell expedition targets Shackleton's lost ship

In early January, a team of Cambridge scientists set out on an expedition to study and map the Larsen C ice shelf in western Antarctica, and – ice conditions permitting – search for the wreckage of Sir Ernest Shackleton’s Endurance.
Professor Julian Dowdeswell, Director of the Scott Polar Research Institute, is chief scientist on the ambitious expedition, which will use drones, satellites and autonomous underwater vehicles to study ice conditions in the Weddell Sea in unprecedented detail.
The Weddell Sea is also the site of one of the most famous stories from the ‘Heroic Age’ of polar exploration.
The Imperial Trans-Antarctic Expedition 1914-17 set out to cross Antarctica via the South Pole.
However, in November 1915, Shackleton and his 28-man crew were confronted with one of the worst disasters in Antarctic history when Endurance was trapped, crushed and sunk by pack ice.
The outside world was unaware of their predicament or location, food was scarce and the chance of survival was remote.
In this film, Professor Dowdeswell tells the incredible story of Endurance, and how he and the other members of the Weddell Sea expedition hope to locate the wreckage of one of the most iconic vessels in polar exploration.

From BBC by Jonathan Amos


A scientific expedition in the Antarctic has set out on a quest to find Sir Ernest Shackleton's lost ship.
The team has spent the past two weeks investigating the Larsen C Ice Shelf and the continent's biggest iceberg, known as A68.
And this puts it just a few hundred km from the last recorded position of the famous British explorer's vessel, the Endurance.
The polar steam-yacht was crushed in sea-ice and sank in November 1915.

Endurance just before it sank: Crushed at the stern, it went down bow first

Shackleton's extraordinary escape from this loss, saving his crew, means there is considerable interest in finding the wreck.
Endurance should be resting on the ocean floor, some 3,000m down.

The Weddell Sea Expedition 2019 team wants to grab the chance of making the discovery, using robotic submersibles.
On Sunday, the researchers announced that their work at Larsen and A68 was complete, and that they would now concentrate on finding the wreck.
But the group will have a tough job reaching its presumed location, concedes chief scientist Prof Julian Dowdeswell.
"We've got a journey of several hundred km from where we are now through really heavy and quite difficult sea-ice," he told BBC Radio 4's Inside Science programme last Thursday.
"We shall do our best to get there with the excellent ice-breaker that we have, but in any given year it will be very difficult to judge whether you will be able to penetrate the sea-ice."

The team has a very good idea of where the Endurance should be.
Shackleton's skipper on the vessel, Frank Worsley, was a highly skilled navigator, and used a sextant and chronometer to calculate the sinking's co-ordinates - 68°39'30.0" South and 52°26'30.0" West.

Estimated position with the GeoGarage platform (NGA nautical chart)

The ship is almost certainly within a few nautical miles of this point.
If Prof Dowdeswell's ice-breaker, the SA Agulhas II, can get reasonably close - it will be game-on.

Frank Worsley used his sextant to record the position of the sinking
Scott Polar Research Institute, Cambridge Uni 

The American geophysical survey company Ocean Infinity is part of the Weddell Sea Expedition group.
It has a Kongsberg Hugin autonomous underwater vehicle that it will deploy to map a 20km by 20km grid square on the ocean floor.
If it succeeds in locating the Endurance, a remotely operated vehicle will then be sent down to photograph the wreck site.

The organisms that normally consume sunken wooden ships do not thrive in the cold waters of the Antarctic, so there is optimism that Endurance's timbers are well preserved.
That said, crushing forces had done quite a bit of damage to the vessel before she slipped below the floes.
"I think that if we locate the Endurance, the greater likelihood will be that her hull is semi-upright and still in a semi-coherent state," commented marine archaeologist Mensun Bound.
"However, on the evidence of the only deep-water wooden wreck I have been privileged to study, I must concede that there is every possibility that she could have been wrenched wide open by impact (with the seafloor), thus exposing her contents like a box of chocolates," he wrote on his expedition blog.

The SA Agulhas II needs the sea-ice conditions to be favourable

Luck has been with the Weddell cruise so far.
Attempts to get to Larsen C in recent years by other expeditions were thwarted by the sea-ice conditions, but the SA Agulhas II made the most of favourable circumstances to reach Larsen and complete an extensive range of studies.
The ice shelf is the fourth largest such structure in the Antarctic.
It is an amalgam of glacier fronts that have flowed off land and lifted up to form a floating platform.

Larsen C is the fourth largest ice shelf in the Antarctic

Similar shelves to the north have collapsed in past decades and researchers want to understand the current status and likely future prospects of Larsen C.
Was the calving from the shelf of the monster berg A68 in July 2017 just part of a natural cycle, or an indication that changes are coming?
"We have acquired detailed observations on the glaciology, oceanography, biology, and geology of the little known area around the Larsen C Ice shelf and the huge A68 iceberg," said Prof Dowdeswell, who is also the director of the Scott Polar Research Institute in Cambridge, UK.
"Analysis of this data will allow us to better understand the contemporary stability and past behaviour of Larsen C, with its wider implications for ice sheet stability more generally."

Links :

Sunday, February 3, 2019

Berkeley Earth's global warming movie for 2018

This animated map shows the history of temperature changes around the world from 1850 to 2018.
Each frame is a 12-month moving average and shows the difference the temperature then observed and the average climate from 1951 to 1980.
The long-term history of global warming is clearly represented.
One can also see a variety of short-term fluctuations associated with variations in weather patterns and internal variability, such as the El Nino/La Nina pattern in the Equatorial Pacific.
This animation is based on the work of Berkeley Earth.

This animation shows how annual average temperatures have changed for countries and regions around the world from 1850 to 2018.
Each frame of the animation indicates a 12-month moving average of national or regional temperature and how much higher or lower that average was compared to the average climate during the period 1951 to 1980.
Countries are organized into regional groups.
The size and color of the circle at each time indicates the temperature difference.
This animation is based on the data produced by Berkeley Earth.
The design of this animation was inspired by a previous animation by Antti Lipponen.

Links :

Saturday, February 2, 2019

Watch this SpaceX ship come tantalizingly close to catching rocket parts

One of Mr. Steven’s final West Coast fairing recovery tests before shipping out for the East Coast. Wait for it…
courtesy SpaceX

From DigitalTrends by Trevor Mogg

When you really think about it, isn’t it mind-blowing that SpaceX can land a rocket back on the ground after a mission? Upright.
The private space company, led by billionaire entrepreneur Elon Musk, has pretty much perfected the landing procedure of its first-stage booster for its reusable rocket system. But it’s having a much harder time nailing the process for recovering the fairing, and has yet to pull it off.
It is, however, getting tantalizingly close, as this week’s effort shows …
The fairing is the nose cone that protects the payload during launch, and SpaceX has built a ship called Mr. Steven for catching it.
Yes, we said “catch.” You see, Mr.
Steven is basically a ship with a massive net over the top of it, and its job is to sail into position to save one of the two fairing parts from landing in the sea.
To be clear, the cone comes down in two sections, with the team currently focusing on perfecting the catching process for one part while fishing the other half out of the sea.
Once it has perfected the system, SpaceX is expected to invest in a second ship.
The impact and briny ocean water can damage the fairing, and seeing as it costs around $6 million to make one from scratch, SpaceX is understandably keen to use it more than once.


Mr. Steven, which is 62 meters long and 10 meters wide, has yet to catch the fairing despite several trial runs and three attempts during actual SpaceX missions.
To improve its chances of catching the fairing, the team last year increased the size of Mr.
Steven’s net by around four times, so it now it covers an area of about 3,700 square meters.
The fairing as a whole is around 13 meters tall and 5 meters wide, and tips the scales at a hefty 1,000 kilograms.
SpaceX has equipped each of the two sections with cold nitrogen thrusters to help them stabilize during their descent.
The system then deploys a GPS-equipped, steerable parafoil (something like a parachute) at around 5 miles above sea level.
This slows it down enough for Mr. Steven to get into position, but the final seconds of the operation are proving tricky.
As you can see from the video above, the latest test out in the Pacific this week came very close to working out.
The fairing even touches the edge of the net before sliding away and falling into the sea.
But considering that its very first effort missed by a distance of several hundred meters, the team is clearly making good progress.

Links :

Friday, February 1, 2019

Major expedition targets Thwaites Glacier



 Antarctica's Thwaites Glacier with the GeoGarage platform (NGA chart)

From BBC by Jonathan Amos

The US icebreaker Nathaniel B Palmer leaves Punta Arenas in Chile on Tuesday to begin an expedition to Antarctica's Thwaites Glacier.

The huge ice stream in West Antarctica is currently melting, and scientists want to understand its likely future contribution to sea-level rise.
If all of Thwaites' frozen bulk were to give way, it would add 80cm to the height of the world's oceans.


"How much, how fast? That's our mantra," said Dr Robert Larter.
"These are the questions we're asking about Thwaites," the British Antarctic Survey scientist told BBC News before leaving Chile.
Dr Larter will be directing operations on the Palmer when it gets on site.

Thwaites Glacier

Credits: NASA/OIB/Jeremy Harbeck

What is the purpose of the expedition?

The Palmer's 52-day cruise is just one part of a five-year, joint US-UK research programme to investigate the glacier.
Data is to be gathered in front of, and on top of the ice stream. Instruments will even be sent under its floating front, or shelf.
It's hoped that by capturing Thwaites' every behaviour, computer modellers can then better predict how its mass will respond to a warming world.



US icebreaker Nathaniel B Palmer

What sort of experiments are planned?

One of the studies to be conducted off the Palmer is a seal-tagging exercise.
Marine mammals will be captured on islands near the glacier and fitted with sensors.
When seals are released to dive in the vicinity of Thwaites, they'll report back on seawater conditions.
"Weddell and Elephant seals like hanging out near the ice front or under ice shelves, places we as humans can't go," explained Dr Lars Boehme from St Andrews University.
"The sensors record details about the seals' immediate physical environment, which gives us a clearer picture of the current oceanic conditions in these remote and inaccessible places."


The tags gather valuable data before falling off when the seal moults
L. Boehme / St Andrews University

Why is there such interest in Thwaites?

Thwaites, which is comparable in size to Britain, is what's termed a marine-terminating glacier. Snows fall inland and these compact into ice that then flows out to sea.
When in balance the quantity of snow at the glacier's head matches the ice lost to the ocean at its front through the calving of icebergs.
But Thwaites is out of balance.
It has speeded up and is currently flowing at over 4km per year. It is also thinning at a rate of almost 40cm a year.
Satellite data suggests Thwaites alone accounts for around 4% of global sea-level rise - an amount that has doubled since the mid-1990s.

What is 'marine ice sheet instability'?

It appears warm water from the deep ocean is getting under Thwaites' ice shelf and eroding the grounding - the point at which the ice stream becomes buoyant.

The problem for the glacier is its geometry.
A large portion of it sits below sea level, with the rock bed sloping back towards the continent.



This produces what scientists refer to as "marine ice sheet instability" - an inherently unstable architecture, which, once knocked, can go into an irreversible decline.

Some scientists have argued that Thwaites is already in this state.

The joint US-UK programme aims to test all assumptions.
"We have fantastic measurements over the past 25 years from satellites and from research vessels that have visited the region, but we need to extend this record to centennial timescales," explained Dr Kelly Hogan.
"I think a lot of people think what we are seeing anthropogenic (human-driven) change, but we don't yet have all of the links in the chain to say that definitively."


Sediment cores will reveal the past history of Thwaites Glacier

Dr Hogan will be taking sediment cores in front of Thwaites.
The fossil contents and chemistry of these muds can be used to deduce the past position of the glacier and the ocean conditions it was encountering - perhaps as far back as a few thousand years ago.
US collaborator Dr Rebecca Totten Minzoni, from the University of Alabama, said: "By discovering the history of Thwaites Glacier under past climate and ocean conditions, we can assess the stability of the glacier today.
"With the majority of the global population living at the coast, including important cultural and industrial centres like my hometown of New Orleans, we need to know how much this vulnerable region of Antarctica will contribute to sea-level rise over the coming decades."

Links :