Friday, September 14, 2018

How a faulty map led to the discovery of America

Theater of the World offers a fascinating history of mapmaking, using the visual representation of the world through time to tell a new story about world history and the men who made it.
Thomas Reinertsen Berg takes us all the way from the mysterious symbols of the Stone Age to Google Earth, exploring how the ability to envision what the world looked like developed hand in hand with worldwide exploration.
Along the way, we meet visionary geographers and heroic explorers along with other unknown heroes of the map-making world, both ancient and modern.
And the stunning visual material allows us to witness the extraordinary breadth of this history with our own eye

From The Spectator by Travis Elborough

A globe placing Japan in the area of Mexico prompted Columbus to cross the Atlantic, according to Thomas Reinertsen Berg’s fascinating Theatre of the World

Reflecting on the genesis of Treasure Island, the adventure yarn that grew from a map of an exotic isle he had drawn to amuse a bored schoolboy on a rainy day, Robert Louis Stevenson observed: ‘I am told there are people who do not care for maps, and I find that hard to believe.’ It’s fair to say that Thomas Reinertsen Berg cares very deeply about them, and his book, sumptuously produced with lots of full-colour images, is a kind of potted treasury of cartographical history that gleams with pieces-of-eight-like snippets of information.

 Ortelius World Map ("Typvs Orbis Terrarvm"), 1570. Source: Library of Congress.

With a title that tips its hat to Theatrum Orbis Terrarum, the first modern atlas produced by the Flemish cartographer Abraham Ortelius in 1570, Thomas Reinertsen Berg’s approach is both impressively global and touchingly parochial, as his native Norway and Scandinavia in general often and unashamedly take centre stage in the narrative.
(A note in the foreword explains that the book has to a certain extent been de-Norwegianised for the English edition.)

But it is, in a sense, a work of thoughtfulness that could only really come from someone who hails from a part of the world that was either off the global map entirely or the victim of some decidedly wayward speculations by cartographers.


He notes, for instance, that if the Hereford Mappa Mundi, created in about 1300, contains possibly the first convincing representation of a ski trail, certain areas at the northern extremities are still shown to be inhabited by ‘people with dog heads’.

Norway, you come to appreciate, has in any case been a tricky country to map.
For a start, there’s its basic geography, the coastline and all those mountains, rivers and fjords.
And then it was a Danish colony for more than 400 years and after that spent close to a century shackled to Sweden.
In more recent times, the discovery in the 1960s of (potentially) oil- and gas-rich deposits of sedimentary rock off its coast caused its government to extend the country’s sovereign boundaries out into the ocean, claiming precious seabed and subsoil in the process.
It perhaps says as much about the particular importance accorded maps by Norway that the first survey in a scheme to chart the nation’s economic activity geographically, initiated in 1964, was only completed in 2002.

Maps, though, as the author illustrates, are always as much about the people and the societies that produce them as the terrains they depict.
This also makes determining whether or not some of the earliest examples we have are actually maps such a thorny issue.
He cites the ongoing disputes over the 9,500-year-old cave painting excavated at Çatalhöyük in Turkey in 1967 and described in some quarters as ‘the oldest town plan in existence’.
Too little is known about the prehistoric culture that produced it to definitely say if it’s a map or merely a nice painting of the local scenery to brighten up a dull cave wall.

Like language in Wittgenstein’s view, use is largely the determining factor with maps; and necessity, inevitably, the mother of their invention.
Whether to help assign property rights in Ancient Sumeria and Babylon, or to work out compensation payments for flood damage by the Nile in Egypt, or looking to invade Persia if you are the Spartans, or running much of the world if you are the Roman Empire, or hoping to maintain Christ’s rule on earth as the established church in the Middle Ages, some sort of map is necessary, as Reinertsen Berg diligently outlines.

He also proffers some choice examples of how those with better maps triumphed over those with poorer ones.
In the 15th century, secretive Spanish and Portuguese imperial navigators, hoarding information about their maritime routes like Incan gold, clung on to their hand-drawn nautical charts.
They were duly to be out manoeuvred by the free-booting Dutch, who sailed with the latest and most up-to-date maps, usually internationally crowd-sourced, and expertly printed in Antwerp.
Still, cartographical mistakes have also helped expand our horizons; it’s likely that Columbus may never have set off to the New World if he had not plotted his voyage using a globe by the German mariner Martin Behaim.

Martin Behaim globe at BNF
Cartographer in Nuremberg, Martin Behaim shares with Christopher Columbus the same conviction that there is an ocean route to Asia.
Between 1484 and 1490, he stayed in Lisbon and sailed for the King of Portugal.
The same year that Columbus set out towards the New World, Behaim composed this globe, which is the oldest surviving western sphere.
All the nomenclature comes from Marco Polo, to whom Columbus will also place exaggerated trust.
With its inaccuracies, this globe reflects the certainties and hopes of Portuguese maritime circles.

Created in 1492 on principles derived from Ptolemy’s only recently rediscovered Geography, Behaim’s globe is the oldest surviving example in Europe; it is also flawed, as he underestimated the size of the earth and ‘placed Japan around where Mexico is located’.

 Globus Martini Behaim Narinbergensis 1492. (Globe of Martin Behaim)
Text Appearing Before Image:
er of the Admiral to the (quondam) nurse of the Prince John, in the Select Lettersof Christopher Columbus, translated by R. H. Major, for the Hakluyt Society, p. 148. ^ Letter of Columbus to Ferdinand and Isabella, in the Profecias. See HumboldtsExamen Critique, Tome I., p. 15. THEORIES OF OTHER GEOGRAPHERS. 103 the logic of the sphere. It was because the world was round, becauseone third of it yet remained to sail across, and because it was possibleto sail across it, that God had given him that mission. On the ever-lasting truths of science must rest the possibility of human achieve-ment. God would not appoint to him the task of bringing the ends ofthe earth together if it could not be done. The theory of the sphericalform of the earth was not new, for that was taught five hundred yearsbefore the Christian era. But the ancient geographers supposed thatthe ocean of the western hemisphere was of such expanse as to bepractically if not absolutely impassable. It was on this all-important
Text Appearing After Image:
Globus Martini Behaim Narinbergensis 1492. Globe of Martin Behaim. point, the size of the globe, that the learned men of modern timesassumed that they had received new light. The globe was muchsmaller than the ancients supposed ; the ocean west of Europe coveredonly one third of it, and then came Asia. Columbus was not a manof wide learning, but he had diligently informed himself of all thathad been advanced on these points by both ancient and modernwriters, and he knew that the geographers of the highest reputation ofhis own time maintained the theory, on which he relied, not only ofthe shape but of the size of the earth. From these he sought argument and encouragement. He can hardly 104 INDIA—THE EL DORADO OF COLUMBUS. (Chap. Y. have failed to know Martin B eh aim, in the service of the King ofiPortugal while Columbus was in vain attendance upon that court,B h -m nd ^^^^ ^^^ showed upou his famous globe, completed in 1492,Toscaneiii. n^^^ \^q ii^d no doubt of the proximity of Asia 

But this error encouraged Columbus to believe that Asia could ‘easily be reached by ship from Europe’.


Facsimile of Behaim Globe (1492–1493)
author : Ravenstein

Equally, innovations in mapping were frequently resisted; Mercator’s famous projections and his Atlas, we learn, were, if more accurate, initially flops as they were too austerely drawn for their times.
An earlier series he published on the Balkans, Greece and Italy featured just ‘one monster and two ships across a total of 21 maps.’
It was only posthumously that sales rose, after Hondius the Elder larded Mercutor’s Atlas with ‘extravagant, baroque illustrations of people in national costume’ and ‘more ships’.


The earliest surviving marine chart of the New World: the La Cosa chart (circa 1500)

Inevitably in a book that moves briskly from prehistoric stone carvings to Google Earth, there are omissions.
Curiously there is nothing here on transport maps or the humble A-Z, but then that might say more about my own geographical biases.
The theatricality in the title also extends to rendering scenes from the map-makers’ lives quasi-novelistically in the present tense (‘With her brush, Anne Ortel carefully applies light-green paint to an area of woodland’).

But, all in all, this is an enthralling book, and joins the likes of Simon Garfield’s On the Map and Jerry Brotton’s A History of the World in Twelve Maps in the field of popular reaffirmations of the ingenuity of geography.

Links :

Thursday, September 13, 2018

Canada CHS layer update in the GeoGarage platform

68 nautical charts have been updated & 2 new chart added

Tracking hurricanes with artificial intelligence



From Mapbox blog by Eric Gundersen

NASA and Development Seed are tracking Hurricane Florence using machine learning techniques, producing results six times faster than current capabilities.
Their neural network-based approach calculates hurricane strength and wind speed by monitoring live imagery as it’s delivered from weather satellites.
This allows NASA to create estimates hourly, a significant speedup from the usual six-hour cycle.

The eye of hurricane Florence
image : ESA / Alexandre Gerst

The primary factor for estimating a hurricane’s destructive potential is wind speed.
By creating faster, more reliable estimates of storm wind speeds, authorities may be able to make better decisions about moving people out of harm’s way and moving resources where they’re needed.
These decisions can help save both life and property.
The issue is growing in urgency: the 2017 hurricane season was the most destructive on record, claiming thousands of lives and causing an estimated $280 billion in damage.

This is going to be a crazy end to the week!
Eastern Pacific: #Paul #Olivia 
Western pacific: Typhoon #Mangkhut, Tropical Storm #27W, Invest 91W
AI vs. humans

Estimates of cyclone intensity rely upon the Dvorak technique, which matches satellite imagery of a storm to known patterns.
Once matched, it’s possible to estimate wind speed.
AI experts at NASA’s Marshall Spaceflight Center and Development Seed trained neural networks using historical hurricane imagery and classifications, allowing this workflow to be fully automated.

 The view of the Atlantic on Sept. 12. Florence on the right, bearing close to the US coast, Tropical Storm Isaac near the Lesser Antilles, and Hurricane Helene off the coast of Africa.
image : NOAA

 Looking at hurricane Florence through wave height
Black represents waves of about 7 meter waves. 

This allows data to flow directly from the GOES-16 weather satellite, to the NASA Cumulus framework running on AWS, to seamlessly generated predictions.

Although it’s currently running at six times the frequency of traditional prediction mechanisms, the system is theoretically constrained only by the bandwidth of its satellite source.


Available now :
The Hurricane Intensity Estimator, built with Mapbox, is running alongside data collected from human estimation and aerial flights.
NASA plans to continue to improve the prediction models.

Hurricane Florence’s location via the Google Crisis Map hurricane tracker

1960 U.S. Weather Bureau Hurricane Tracking Chart
courtsey of Geographicus


Links :

Wednesday, September 12, 2018

Using new technology to find shipwrecks on the ocean floor

The oceans are like a gigantic museum of sunken ships, with wrecks and artifacts spanning hundreds of years.
Photo: Betty Kagan Schott

From GeminiSearchNews by Idun Haugan

An estimated three million shipwrecks lie in seabed graveyards around the world – with as many as 1000 of them around Svalbard.
Each of them has their own unique story — one that’s made much more accessible with new technology.

Throughout the centuries ships have weathered wars, storms, icebergs, and pirates, to name a few.
Many ships have been lost in the face of these forces and gone down with all hands.
They lie on the bottom of the ocean with their stories and secrets.
Many of them have been there for a long time, inaccessible in the depths to anyone but fish and other creatures.

“The world’s oceans are like a big museum,” says Øyvind Ødegård, a marine archaeologist at NTNU who recently defended his dissertation entitled “Towards Autonomous Operations and Systems in Marine Archaeology.”

“The technological advances that have taken place over the last few years are fantastic.
A human diver can only work down to about 30 metres, and the vast majority of shipwrecks are much deeper than that.
Underwater robotics, sensors, robots and control systems are now making it possible to obtain completely new insights into what’s on the seabed,” he says.

Smeerenburg fjord with the GeoGarage platform (NHS nautical chart)

On the hunt for the Holy Grail

A particularly enticing ship graveyard lies between Svalbard and Greenland, where there are about 1000 wrecks.
Seventeen of them are located in the Smeerenburg fjord.
Ødeård is particularly interested in these ships.
“Somewhere down there on the bottom of the ocean are seventeen shipwrecks, all in about the same area.
That’s the grail I’m hunting for,” he says.

How they all ended up there is a story unto itself.

Long before people relied on fossil fuels for heat and light, whales were a highly sought-after commodity because of their fat.
The northern waters of the Arctic were rich with whales, particularly in the seas around Svalbard, Jan Mayen, Iceland and Greenland.
This drew ships and people from many nations, in spite of the sometimes harsh conditions in these faraway waters.

Early in the 1600s, shipping nations like the Netherlands, France, Spain and England began whaling along the coast and in the fjords of Svalbard.
The Netherlands led the charge and established the first whaling station north of Svalbard, called Smeerenburg.
It was nicknamed “Fettbyen” or “Spekkbyen” – Fat town – as whale oil production took off.


Painting by Abraham Storck – Stichting Rijksmuseum het Zuiderzeemuseum.

The Sun King sank ships

These whaling ships plied the oceans for decades, supplying Europe with lamp oil, raw materials for soap, and boning for corsets and umbrellas, for which the baleen from the bowhead whales that were found in these waters was well suited.
But the intensive hunt managed to almost exterminate whales in the fjords and along the coast in just a few decades.

And so the ships had to venture farther north, towards the ice’s edge and into more inhospitable waters, which inevitably led to shipwrecks.
During one winter, thirteen Dutch ships became stuck in drift ice in Sorgfjorden.
The crew had to abandon their ships and leave the full load on board.
The crew survived by travelling to Smeerenburg on foot and in small vessels, but their ships disappeared into the frigid depths.

It wasn’t only difficult waters that caused shipwrecks, however.
The highly prized whale oil and the opportunity to conquer new lands created major conflicts, not least between the Netherlands and France.

 Sorgfjorden with the GeoGarage platform (NHS nautical chart)

Louis XIV, the Sun King, was eager to damage the Netherlands’ economy and the country’s ability to wage war, and so sent his own warships north to Svalbard.
Two French frigates and 40 Dutch whaling ships battled in 1693 in Sorgfjorden, which led to two ships sinking on the spot.
Another seventeen Dutch ships were taken back to the Smeerenburg fjord and sunk there.
These are the ships that Ødegård would love to learn more about.

World’s northernmost shipwreck

“We have reason to believe that there are many wrecks in the Arctic that are especially well preserved because of the cold water,” says Ødegård.

The autonomous underwater vehicle Hugin on its way to the deep.
Photo: Geir Johnsen, NTNU

Two years ago, he was on an expedition in the region with biologists, technologists and polar scientists.
The goal was to study life in the sea during the polar night – and they investigated a shipwreck in Isfjorden that is the world’s northernmost mapped shipwreck to date.

Much to their surprise, the researchers also found a clam that usually does not live that far north and in such cold water.
This discovery doesn’t bode well for shipwrecks and adds urgency to the need to locate and map them.
Ultimately, the goal is to organize a more extensive research expedition to the area of the seventeen ships.

Enormous underwater technology advances

Accomplishing this will require the technological innovations that Ødegård and his colleagues have been testing.

Researchers can now use underwater robotics and joysticks to control underwater operations with great precision.
The control systems are advanced and smart, and artificial intelligence (AI) and powerful computers enable robots to evaluate many situations independent of human help.

“We’ve seen huge developments in underwater robotics and relevant sensor technology over the last few years.
In my PhD thesis, I looked at how selected platforms and sensors can be used to develop new methods for marine archaeology research with a high degree of autonomy, and I suggest a model for how such decisions can be made without needing a human being in the loop,” Ødegård said.

 3D model of a wreck at Munkholmen in Trondheim harbour based on photogrammetry.
Draped with photo mosaic (top) and colour-coded point cloud (bottom).

Smart sensor technology

Three sensor technologies are essential for mapping shipwrecks at great depths and with great precision.
“Synthetic aperture sonar (SAS) technology, which is a high-resolution acoustic sensordeveloped by the Norwegian Defence Research Establishment and Kongsberg Maritime, has collected data that represents a quantum leap in quality and accuracy, compared to traditional methods,” says Ødegård.

This acoustic sensor produces high-resolution images.
Detailed bottom maps can thus provide important information without the need for inspection dives with a video camera to confirm or eliminate possible wreck finds.

Another tool that the researchers have used is an underwater hyperspectral imager (UHI).
This is an optical sensor that takes photographs using the entire visible light spectrum.
Common cameras use only three wavelengths (RGB), whereas an UHI can use up to 800.

Finally, a stereo camera on a ROV (remote controlled underwater robot) is used to create high-resolution 3D models of selected wrecks using photogrammetry.
The camera provides resolutions down to the millimetre level.
The stereo camera is “excellent for documenting and monitoring wrecks, where even small details can be very important,” Ødegård says.

These three sensors, plus others, should be able to be housed on a single underwater vessel, which collects and analyses data on its own.
Based on the analyses, the ROV determines whether it will take the time to investigate and possibly document what is most likely a wreck, or whether it will go on to map new areas.

Pictures 1 and 2 show wrecks depicted with standard side-searching sonar.
Picture 3 shows the same wreck depicted with Synthetic Aperture Sonar (SAS).
Picture: Norwegian Defence Research Establishment 

Archaeologists, engineers and biologists in the same boat

Øyvind Ødegård has 20 years of experience as a marine archaeologist and works at the NTNU University Museum.
While he worked on his doctorate, he maintained a 75 per cent affiliation with AMOS, NTNU’s Centre for Autonomous Marine Operations and Systems.

“In order to build more depth into the research I was doing at the museum, Asgeir Sørensen suggested that I take a doctorate to build up a student group in the field of marine archaeology and technology,” says Ødegård.

He worked in interdisciplinary teams with biologists and engineers, in addition to archaeologists.

“This research has opened the eyes of biologists and engineers to the world of underwater archaeology.
We can see that we share a lot of common interests, and it’s fun and useful to work in an interdisciplinary way – even though it gets a bit crazy occasionally,” he says.

Ødegård will continue to split his time between AMOS and the NTNU University Museum in the future and will continue to study technology can help us collect new information from the ocean depths.

A variety of items typical found at wreck sites.
Measurements taken in the lab formed the basis for a spectral library that can be used to classify measurements on the seafloor.

Self-propelled vessels are the goal

Ødegård notes that AMOS and the AUR lab have developed a lot of the equipment that the researchers use.

“We test new equipment in the field, so it’s a win-win situation for the people who are developing the technology as well as for those of us who use the technology for research.
We’ll also keep working with the Defence Research Establishment, which is at the forefront of research on extensive and powerful AUVs,” he says.

“The long-term goal is to have extended and completely autonomous expeditions with unmanned AUVs, where wrecks can be detected, mapped and inspected with a variety of sensors and then return to the surface with high quality datasets.
We aren’t quite there yet, but we’ve been surprised by how close and how far we’ve come,” Ødegård says.

Links :

Tuesday, September 11, 2018

Norway NHS layer update in the GeoGarage platform

98 nautical charts have been updated & 1 new inset has been added