Tuesday, August 21, 2018

It’s ‘the last frontier on Earth that’s truly not well understood,’ and scientists are about to explore it

Left to right (top to bottom): Enypniastes eximia, Doliolid Dolioletta gegenbauri, Anglerfish, Polychaetes and Squid Histioteuthis sp. 

From Boston Globe by David Abel

In the briny deep, far from shore, the vast darkness is home to tiny, glowing fish, massive jellies that may be the largest animals on the planet, and an untold number of other creatures.
What inhabits this realm of the ocean — from about 600 feet to about 3,000 feet — is so shrouded in mystery that scientists call it the “twilight zone.”

At the end of the week, a team of marine biologists, engineers, and other specialists from the Woods Hole Oceanographic Institution will embark on the first long-term study of this netherworld, a nearly lightless region believed to be teeming with life — perhaps more than the rest of the ocean combined.
“It’s the last frontier on Earth that’s truly not well understood,” said Andone Lavery, a senior scientist who will oversee the first expedition.
“We have many questions.”

Chief among them: What animals live there, and how many?
Do they play a role in helping regulate the planet’s climate, and if so, how?
Could these species provide a sustainable source of protein for the world’s growing population?
That last question may be the most controversial.

The scientists, who this year won a $35 million grant from a coalition of philanthropy groups called the Audacious Project, say they plan to spend the next six years mapping the biodiversity of the twilight zone before it’s exploited by the fishing industry.
But some environmental advocates have raised concerns about whether the research could have the opposite effect, opening something of a Pandora’s box by revealing to the industry what bounty lies below.
“There is a clear risk with shining a bright light on these unexploited fish that live in the darker parts of the ocean,” said Gib Brogan, a fisheries policy analyst for Oceana, a Washington-based advocacy group.
“Gold-rush fisheries don’t benefit anyone in the long term.”

Peter Auster, a marine sciences professor at the University of Connecticut who serves as a senior research scientist at the Mystic Aquarium, urged officials to prevent the findings from being put to commercial use without thoughtful regulations.
“New knowledge can lead to unforeseen consequences,” he said.
“Policymakers and management agencies need to get in front of potential problems and keep new fisheries from developing until they can assess impacts and insure sustainable use.”

At Woods Hole, the scientists leading the research acknowledged the dilemma, but they contend that the potential for new knowledge outweighs the risks.
“If large-scale harvesting starts before we understand it, that’s a recipe for disaster,” said Heidi Sosik, a Woods Hole biologist and the lead investigator of the project.

Her hope, she said, is that learning more about the region will ultimately help preserve it.
“At this point, we don’t even know basic information, such as how long the fish there live,” she said.
“Without knowing that, we can’t possibly make informed decisions about how to interact with this ecosystem in a sustainable way.”

 DEEP-SEE testing at Woods Hole Oceanographic Institution.

Yet with many fisheries around the world severely depleted, new fishing grounds would be a welcome development, so long as scientists can ensure it’s done sustainably, she said.

In some cases, fishermen are already harvesting organisms that inhabit the twilight zone.
Large trawlers in recent years have been scooping up increasing quantities of crustaceans that migrate from surface waters to the deep sea, grinding their catch into fishmeal for aquaculture or pet food.

Many of those trawlers, however, are operating in international waters, beyond the reach of US law.
Sosik said she hopes the team’s findings will eventually help forge international agreements that would prevent overfishing of the twilight zone.
“If we can sustainably harvest this part of the ocean, without massively disrupting larger ocean structures, I’m all for that,” she said.
“We need high quality sources of protein, but it needs to be effective exploitation, not overexploitation.”

On a recent morning, Sosik’s team tested some of the new technology designed to peer into the great abyss.

A crane lowered one of the new instruments — a $1.2 million, 2,500-pound, specially designed system of sonars and cameras called DEEP-SEE — into a test well.
Using strobe lights, the 16-foot-longsystem has the capacity to detect microbes and other organisms as small as the width of human hair.

Being able to see such small organisms, and determine their numbers and habits with sophisticated sonar systems, should allow the researchers to better understand where the organisms migrate and what triggers their movement.
Many species in the twilight zone — everything from plankton to squid — are believed to participate every night in what the scientists call the largest migration on the planet, rising from the deep to feed near the surface before returning by daybreak to the safety of the darker, deeper sea.

That migration is believed to help regulate the planet’s climate.
As fish and other species migrate, they carry large amounts of carbon dioxide from surface waters into the deep ocean.
They do so through the cycle of small creatures ingesting phytoplankton, tiny plants that absorb carbon near the surface, and then transferring that to the larger species that eat them.

Nearly all the carbon that makes it to the deeper sea — through dead plankton, shells, and fecal matter, among other things — remains there, locking it away from being released as a heat-trapping gas into the atmosphere.

The members of the research team, which include robotocists, ecologists, chemists, and economists, also plan to study how ocean currents such as the Gulf Stream affect the twilight zone and why many of the animals there are bioluminescent, emitting colorful lights that allow them to attract mates and ward off predators.

Over the coming years, the researchers will be introducing a range of sophisticated new sensors, autonomous robots, advanced cameras, and other new tools.

For now, their immediate goal is to ensure that the new equipment works.

On Friday, they will start a 10-day expedition on a research vessel on loan from the National Oceanic and Atmospheric Administration.
The ship will travel about 150 miles south of Woods Hole to the closest deep waters, a section of the North Atlantic that’s about 6,000 feet deep.
“It’s kind of surreal that this is happening,” Sosik said.
“A year ago, it was just a dream.”
She added: “We’re hoping to learn amazing things.”

Links :

Monday, August 20, 2018

Denmark Faroë islands & Greenland (DGA) layer update in the GeoGarage platform

119 nautical raster charts & insets updated

The travel guides that charted our world

A devout Jesuit, Scherer’s maps usually contain religious overtones. Here, in its north polar projection of the world, Magellan’s circumnavigation is tracked and dated.
The myth of California as an island continues.
On the left is an engraving of Victoria, the only remaining ship from Magellan’s armada.
On the right, the few survivors of the voyage are shown making their way to the Santa María de la Victoria church in Seville, where they go to give thanks for their safe return.
The date, from the cartouche above the scene, is September 7, 1522; the number of men is 18 out of the original 237.


From BBC by Rossi Thomson

Essentially travel guides, these old books and maps were used by sailors, academics and travellers in the 15th and the 16th Centuries to navigate and explore the world.

Checking a navigation mobile app to quickly establish how to get from point A to point B has become second nature to us.
Measured in megabytes, the world now fits in our pockets.
It is quite astonishing, then, to see first-hand that only a few centuries ago geographical knowledge was yet to be fully charted, and how religious beliefs and fear of the unknown co-existed with burgeoning scientific know-how.

“Look here,” said Mattea Gazzola as her gloved hand pointed to the 570-year-old planisfero (a planisphere, or spherical world map) in front of us.
“To the east is the Biblical Paradise depicted as a walled town dotted with towers. To the south is an unbearably hot impassable desert, and to the north lies another desert uninhabited due to extreme cold. In the centre of the world is Jerusalem.”

Giovanni Leardo’s planisphere is based on Ptolemy’s geocentric model (Credit: Rossi Thomson, by permission of the Biblioteca Civica Bertoliana – Vicenza)

This world map, which dates to 1448 and was authored on parchment by Venetian cartographer Giovanni Leardo, is both beautiful and intriguing.
Combining Ptolemy’s geocentric model (the idea that the Earth is at the centre of the Solar System), Christian beliefs, pagan symbols, Arabic geographical theories and scientific formulas, it represents the continents as they were then-known by Europeans, surrounded by a big ocean.
Six concentric circles drawn around the world and filled in with tiny, neat numbers and letters allow the user to calculate when Easter takes place, the months of the year and the phases of the moon.

The Italian word ‘planisfero’ comes from the Latin planus (flat) and sphaera (sphere), and there are only three known of these world maps hand drawn and signed by Leardo.
The oldest one (1442) is held at the Biblioteca Comunale in Verona; the newest (1452) is kept by the American Geographical Society Library; and the middle one (1448) takes pride of place in the collection of the Biblioteca Civica Bertoliana in Vicenza, a smaller Italian city sandwiched between Venice and Verona.

Housed in a former Somascan monastery, the archive of Biblioteca Civica Bertoliana contains thousands of rare books and manuscripts.
If placed in a line, they would stretch more than 19km.
Over the centuries, these tomes were donated to the library by the rich noble families of Vicenza, a city known for its architectural heritage, historical silk and jewellery trades, as well as its allegiance to the Republic of Venice during its maritime heyday.

Now, some of the most precious and intriguing of these books and manuscripts lay on a wide, old-fashioned desk in front of me in the dusky room of the library's archive.
Essentially travel guides, these books and maps were used by sailors, academics and travellers in the 15th and the 16th Centuries to navigate and explore the world.

Leafing through them, Gazzola – the library's archivist – told a story.

A new era of mapping the world

Between the invention of the printing press in c.
1440 and the Age of Exploration reaching one of its pinnacles in the late 15th and early 16th Centuries, a revolution took place in the art of mapping and describing the world.
First-hand knowledge gained through seafaring, commerce, geographical discoveries, complex mathematical calculations and even religious pilgrimages to the Holy Land came flooding in and changing the outlines of the maps of the times.

Within 150 years, the geographical model of Leardo's planisfero was left behind, and the world more or less as we know it today emerged.

An important step along the way was the publication (in 1475 in Vicenza) of the first printed edition of Ptolemy's Geography in Latin.
Claudius Ptolemy, a 2nd-Century Greco-Roman mathematician, astronomer and geographer, had described the world known to the Roman Empire at the time and assigned geographical coordinates to all places.
As such, Earth was a strip of flat land about 70 degrees wide with Cadiz to the west and India or Cathay (China) to the east.

Maps based on Ptolemy’s Geography facilitated the exploratory travels during the 15th Century (Credit: Rossi Thomson, by permission of the Biblioteca Civica Bertoliana – Vicenza)

Ptolemy's work was re-discovered by Byzantine scholar Maximus Planudes in the 13th Century, and for hundreds of years Ptolemy was held as the supreme authority on all things cartographic and geographical.
Unfortunately, his original maps had been lost, and Planudes recreated them on the basis of the written text and coordinates.

After Ptolemy's Geography had been translated from Greek into Latin in 1406 by hand, more maps were drawn by many different cartographers based on Ptolemy’s text, coordinates and mathematical calculations.
These maps facilitated the exploratory travels during the 15th Century and led to a renaissance in cartography.

The 1475 Vicenza edition of Ptolemy's Geography didn't include the maps (only his original text and coordinates).
Instead, Gazzola showed me a later edition of the seminal work published in Rome on 4 November 1490.
The large and heavy tome is interspersed with 31 detailed printed maps which had been coloured by hand in yellow and ochre tones for the lands and blue shades for the seas.

Typically for an incunabulum (the term used to designate the earliest printed books, especially ones before 1501), the book doesn't have a frontispiece.
Just like a manuscript, this early edition of Ptolemy's Geography starts directly with the text without any preface.
“Frontispieces giving the name of the author, the work and the printing date only really started being used after 1500,” Gazzola explained.
This is when the Venetian humanist scholar and publisher Aldus Manutius revolutionised the printing world.
“The modern book starts with him.”
In the era of the Venetian dominance over the Adriatic and the Mediterranean seas, Manutius established the printing office Aldine Press (in Venice), was the first to introduce italics fonts, and published more than 130 books in Greek and Latin.

A harbinger of modern-day travel guides

The next travel book Gazzola showed me had a detailed, beautifully printed frontispiece.
And a very long title: Quae intus continentur Syria, Palestina, Arabia, Aegyptus, Schondia, Holmiae, Regionum Superiorum Singuale Tabulae Geographicae.

Jacobus Ziegler’s work includes descriptions aimed to help travellers to the Biblical lands (Credit: Rossi Thomson, by permission of the Biblioteca Civica Bertoliana – Vicenza)

Written by the Bavarian humanist and theologian Jacobus Ziegler and published in 1532 in Strasbourg, this is a harbinger of modern-day travel guides.
The book includes a detailed description of the Biblical lands and aims to help pilgrims on their travels through them.
It contains information about the different cities there and the local traditions, thus setting the tone for the millions of travel guides to be published around the world from then onwards.

Gazzola picked up a small leather-bound book that she described as ‘molto geniale’, or ‘very clever’ in English.
This is Cosmographia (also known as Cosmographicus Liber) by the German humanist and print-shop owner Petrus Apianus.

Known for his works in the fields of mathematics, cartography and astronomy, Apianus published Cosmographia in 1524.
It was one of the first works to base geography on mathematics and measurements.
Such was its success that it was reprinted 30 times in 14 languages.
The one I was looking at was a first edition in Latin printed in 1540 in Antwerp (one of the three leading centres of early European printing, along with Venice and Paris).

Exploring astronomy and navigation, Cosmographia is notable for its use of volvelles, wheel charts with rotating parts.
Made by layering several pieces of printed paper, the volvelle forms a complicated instrument – an early example of a calculator or an analogue computer – that allows the user to determine the position of the stars, lunar phases and the zodiacal signs, as well as other important factors for sea travel.

“Preparing the wooden plates to print the different parts of the intricate volvelles would take weeks,” Gazzola said while gently flipping the top layer of one of these devices to show me that the paper used for its construction was printed with music notes on the reverse.
Print shops at the time would recycle even the smallest scraps due to the high price of paper.

Apart from four volvelles, Cosmographia is also famous for containing a world map, which is one of the earliest to show in detail the entire east coast of North America.

Geographic knowledge was constantly expanding at the time.
One of the contributing factors for this was the technical travel literature – a body of abacus books, port tariffs, multilingual glossaries, maps and pilot books – helping the Italian Maritime Republics explore and control the merchant and military naval routes in the Mediterranean.

Hand-drawn parchment maps called ‘portolanos’ were created by ships’ cartographers (Credit: Rossi Thomson, by permission of the Biblioteca Civica Bertoliana – Vicenza)

Cartographers working on ships produced detailed nautical charts.
Gazzola picked up a portolano, a hand-drawn parchment map outlining all known Mediterranean ports, coastal cities, naval routes, docking areas and compass roses.

Little icons indicated the character of each place.
For example, there were drawings of a camel, a lion and an ostrich on the African coast.
Colourful flags flapped above turreted city icons, and countless place names neatly traced the coastlines.

The portolano dates to the second half of the 16th Century.
As it was a work tool, it was not signed by its author and changes could be freely made to it in accordance with the navigational needs of the ship on which it was used.

The first coffee table book?

Unlike the portolano, the next book Gazzola showed me was devised as a splendid forerunner of coffee table books.
Called Theatre of the World (in Latin, Theatrum Orbis Terrarum), it is the first true modern atlas.
Written by the Flemish scholar and geographer Abraham Ortelius, it was originally printed in 1570 in Antwerp.
For the first time, one book contained the whole of Western European geographic knowledge in both text and maps.
The maps, based on the work of the best cartographers, were uniformly scaled and printed using copper plates and then hand-coloured with paints that still look incredibly bright and fresh.

Such was the Renaissance hunger for geographic and scientific knowledge of the rich middle classes – who valued books as a symbol of knowledge – that the atlas was repeatedly reprinted in Latin, French, German and Dutch among other languages.

Abraham Ortelius’ Theatre of the World is considered the zenith of 16th-Century cartography (Credit: Rossi Thomson, by permission of the Biblioteca Civica Bertoliana – Vicenza)

At the time of its many publications between 1570 and 1612, Theatre of the World was a highly valued and rather expensive book that the rich merchants and noblemen of Europe liked to add to their prized collections.
Nowadays, it is considered the zenith of 16th-Century cartography.

Many of the maps contained in it are based on sources that no longer exist or are extremely rare.
The names of the geographers and cartographers both used as sources by and known to Ortelius were provided in an extensive list called Catalogus auctorum tabularum geographicarum (Catalogue of the Authors of the Geographical Maps) in the Theatre of the World.

In 1570, the list in the first edition included 87 names; in just over three decades it had grown to 183 names.
Among them, for example, is the naturalist Charles de l'Écluse (better known by his Latin name Carolus Clusius) who published one of the earliest books on Spanish flora and whose work inspired the map of Spain in Ortelius’ Theatre of the World.

Theatre of the World features a small drawing of Ferdinand Magellan’s ship, Victoria (Credit: Rossi Thomson, by permission of the Biblioteca Civica Bertoliana – Vicenza)

The atlas is astonishing to look at.
Apart from depicting strictly geographical features, each map is also adorned with detailed drawings of local customs as well as phantasmagorical creatures.
The edition kept at the Biblioteca Civica Bertoliana is from 1592 and it contains 108 maps.
It represents the world much as we know it today.

Curiously enough, a map of South America features a small drawing of Victoria, one of Portuguese explorer Ferdinand Magellan's five ships and the first to successfully circumnavigate the world.
Coincidentally, a notable passenger on Victoria was one Antonio Pigafetta, Magellan's diarist and one of only 18 people to return from the daring expedition.
Born in Vicenza, Pigafetta's name is still very much known and respected in the city.

The first voyage around the world

“Here it is,” Gazzola said and pulled out one last book.
“The First Voyage Round the World.”

This is Pigafetta's account of Magellan's circumnavigation.
Between 1524 and 1525, Pigafetta wrote his memoirs on the historic journey, drawn up from the meticulous diaries that he’d kept over the three years of travel.
The original diary of the first voyage around the world was given as a gift to Emperor Charles V, who ruled over the Spanish Empire and the Holy Roman Empire, and subsequently vanished, the Spanish court likely wanting to obliterate the merits of the Portuguese Magellan.

Antonio Pigafetta was an inconvenient witness to what happened during the expedition, and was hastily dismissed by the Spanish emperor.
However, on 5 August 1524, the Senate of the Republic of Venice granted Pigafetta the privilege of printing his diary.

Antonio Pigafetta details Magellan’s travels in The First Voyage Round the World (Credit: Rossi Thomson, by permission of the Biblioteca Civica Bertoliana – Vicenza)

The Biblioteca Civica Bertoliana keeps a later 18th-Century edition of Pigafetta’s diary with colour illustrations.
Reading this extraordinary book gives us a first-hand understanding of Magellan’s achievement and the incredible hardship his crew suffered.
From Magellan discovering the Pacific Ocean for Europe and giving it a name in line with its mild and gentle character (pacifico means ‘peaceful’ in Spanish and Portuguese) to important observations made by Pigafetta about the flora, fauna and the anthropology of the new lands, the text is peppered with geographic facts that propelled Europe’s scientific knowledge forward.

Of course, the most important finding made was that Earth is indeed round, and Magellan’s crew (according to Pigafetta’s calculations) covered 14,460 leagues (43,400 miles) to prove this.

Centuries after these seminal travel books and maps were first drawn and printed, it is quite incredible to think about the jumps in human knowledge our world has experienced since then.
Like bright lights in a deep fog, they led the world’s navigators, explorers, travellers and scientists step by step forward, charting the world and allowing us to have it at our fingertips today.

Links :


Saturday, August 18, 2018

An English map of the Kingdom of France is represented under the form of a ship.

Relief shown pictorially. - Also shows administrative divisions (departments). 
Text, calendar, and map names in English. Index of departments in French. 
Title from first sentence of text at lower left. 
"Published as the act directs, June 28th 1796, by the author, no. 49 Great Portland Street." 
Paris meridian. 
Watermark: 1794 J. Whatman.
Library of Congress