Tuesday, June 12, 2018

New Zealand Linz layer update in the GeoGarage platform

2 nautical raster charts updated

‘Unofficial Charts’ on the horizon?

Atlantic Ocean (1786)
Dépôt général des Cartes Plans et journaux de la Marine publiée par ordre du Ministre pour le service des vaisseaux Français

From Hydro by Gilles Bessero

In the article entitled ’How Blockchain Will Have an Impact on Navigation’ published in the March/April 2018 issue of 'Hydro International', Gert Büttgenbach explains how the new blockchain technology could be potentially beneficial for the production and distribution of nautical charts.
One of the conclusions of the article indicates that the new technological environment calls for reconsidering the ’exclusive domain of national Hydrographic Offices’ (HOs) and suggests that the private sector could in future produce ‘unofficial charts’ that would be superior to ’official’ charts produced by the HOs.
But these views reflect a misunderstanding of the situation, according to Gilles Bessero.

I believe that encouraging the community to think about the impact of new technologies is always a good thing, especially in an environment that is often considered, whether rightly or wrongly, as rather conservative.
The question as to which organizations should be entrusted with the production of nautical charts as a key enabler of safe navigation is the subject of recurrent debate.
As a matter of fact, this was originally an activity run mostly by private chartmakers and chart information was considered a trade secret.


Detailed Depot De La Marine's sea chart of the region centered on Jamaica, with the southern part of Cuba and western end of Hispaniola.
This detailed map of Jamaica, shown divided into parishes, includes strong topographical details with many coastal toponyms, as well as the coastlines of southern Cuba and western Haiti.
The Dépôt de la Marine, known more formally as the Dépôt des cartes et plans de la Marine, was the central charting institution of France.
The centralization of hydrography in France began in earnest when Jean-Baptiste Colbert became First Minister of France in 1661.
Under his watch, the first Royal School of Hydrography began operating, as did the first survey of France’s coasts (1670-1689).
In 1680, Colbert consolidated various collections of charts and memoirs into a single assemblage, forming the core of sources for what would become the Dépôt.
The Dépôt itself began as the central deposit of charts for the French Navy.
In 1720, the Navy consolidated its collection with those government materials covering the colonies, creating a single large repository of navigation.
By 1737, the Dépôt was creating its own original charts and, from 1750, they participated in scientific expeditions to determine the accurate calculation of longitude.
In 1773, the Dépôt received a monopoly over the composition, production, and distribution of navigational materials, solidifying their place as the main producer of geographic knowledge in France.
Dépôt-approved charts were distributed to official warehouses in port cities and sold by authorized merchants.
The charts were of the highest quality, as many of France’s premier mapmakers worked at the Dépôt in the eighteenth century, including Philippe Bauche, Jacques-Nicolas Bellin, Rigobert Bonne, Jean Nicolas Buache, and Charles-François Beautemps-Beaupré.
The Dépôt continued to operate until 1886, when it became the Naval Hydrographic Service.
In 1971, it changed names again, this time to the Naval and Oceanographic Service (SHOM).
Although its name has changed, its purpose is largely the same, to provide high quality cartographic and scientific information to the France’s Navy and merchant marine.

France was the first country to establish a national Hydrographic Office in 1720.
The rationale behind this initiative was that more warships were being lost at sea because of lack of access to charts than in combat.
The benefit of assigning a dedicated public organization to the task of collecting all available information, compiling it and making it available through ’official’ nautical charts was progressively recognized and all maritime nations followed the lead of France more or less rapidly.
Some private chartmaking continued into the 20th century but it was generally focused on the specific needs of the leisure market.
The obligation for ships to carry adequate and up-to-date nautical charts and publications was introduced in the International Convention for the Safety of Life at Sea (SOLAS) of 1974 (regulation V/20) but the provisions related to the production of adequate nautical charts and publications were left at the discretion of the Contracting Governments.

Carte de la rade de Brest en 1779.
 Chart of Brest with the GeoGarage platform (SHOM 2018)

In the late 1980s, the advent of the digital era created a new opportunity for private entrepreneurs who were keen to develop electronic chart systems (ECS) and proposed digital nautical charts generally obtained simply through digitising the paper charts produced by HOs.
When the progress of ECS technology led to the consideration of using such systems not only as navigation aids complementing paper charts but as meeting as such the SOLAS chart carriage requirement, the International Maritime Organization adopted Performance Standards for Electronic Chart Display and Information Systems (ECDIS) in 1995.
Considering the liability aspects, the Performance Standards included a provision that the associated Electronic Navigational Charts (ENCs) had to be issued ’on the authority of government-authorized hydrographic offices’.
This provision was refined in the amendments to the SOLAS Convention that were adopted in 2000 and entered into force on 1 July 2002.
These amendments include a definition of a nautical chart or publication as ’a special-purpose map or book, or a specially compiled database from which such a map or book is derived, that is issued officially by or on the authority of a Government, authorized hydrographic office or other relevant government institution and is designed to meet the requirements of marine navigation.’ (regulation V/2.2).
They include also the requirement that ’Contracting Governments undertake to arrange for the collection and compilation of hydrographic data and the publication, dissemination and keeping up to date of all nautical information necessary for safe navigation.’ (regulation V/9).

Now it is up to each Contracting Government to decide which arrangements best suit its circumstances.
The requirement is solely that nautical charts and publications should be produced on the authority of a Government and this is justified by the liability issue, noting the extent and cost of the damages that could be caused by a ship’s grounding due to a charting error.
As explained in Publication M-2 of the International Hydrographic Organization on ’The need for hydrographic services’, ’Coastal States can satisfy their hydrographic needs and obligations through a variety of arrangements (…).
The use of bilateral arrangements with established Hydrographic Services and the use of commercial contract support are alternatives to establishing a full in-country Hydrographic Service.’
The reality is that a number of HOs do outsource production activities to the private sector.
Therefore, one should not oppose HOs versus the private sector and ’official’ versus ’unofficial’ charts but encourage both sides to imagine together the most efficient ways to improve future ’official’ charts for which governments continue to accept full responsibility.

In that perspective, it is worth noting that HOs are evolving from a traditional chart-centric model to a data-centric model in order to address the variety of hydrographic requirements associated with all human activities that take place in, on or under the sea and support the sustainable development of the oceans.
This means that delivering a portfolio of nautical charts covering the waters of a country is no longer an end in itself but one of the many applications of a national marine spatial data infrastructure that must be considered as a public good.
The private sector can and should play a major role in developing tools to manage efficiently the MSDI as well as in inventing and developing a variety of value-added products and services derived from that infrastructure.
But as long as shipping remains a significant component of the world trade infrastructure, there will continue to be a substantiated need for ’official’ nautical charts.

What rules apply to migrants rescued at sea?

Photo: Karpov/SOS Mediterranee/AFP

From The Local by AFP

In the standoff between Italy and Malta over a migrant ship stranded in the Mediterranean, both have insisted on their right to refuse a vessel entry to their ports.

Although Spain offered safe harbour to the boat and the 629 migrants on board, the episode has raised questions about a country's legal obligations towards those rescued at sea.

courtesy of Le Monde (Francesca Fattori & Xemartin Laborde)

Here are a few key questions.

Are the rules clear?

Generally speaking, no.
"International maritime law does not provide for specific obligations which would determine in all cases which state is responsible to allow disembarkation on its territory," the United Nations refugee agency (UNHCR) says.

But that does not mean a country can simply hold up a stop sign and wash its hands of the situation when a vessel packed with vulnerable migrants approaches its shores. UNHCR also pointed to "key treaties" stating that a nation which has responsibility for an area in which a search-and-rescue operation takes place is required to "exercise primary responsibility" for coordinating the migrants' safe disembarkation.

Photo: Louisa Gouliamaki/AFP

The International Organization for Migration also said that while states are not forced to accept specific vessels, there is a collective duty to ensure a humane outcome.

"Regarding disembarkation, states are obliged to cooperate to find a safe place to disembark migrants rescued in their search and rescue area," IOM spokesman Leonard Doyle told AFP, citing legal experts.

What if there's an emergency on board?

This could arguably compel a state to grant access to its ports.

"If the country has control over the ship and there are migrants in dire straights aboard and no agreement with another state to take them can be found, they should not delay but accept them," Doyle said.

In the case of the Aquarius, which is operated by SOS Méditerranée, UNHCR said that the dwindling provisions on board created "an urgent humanitarian imperative" for Italy and Malta to allow the boat to dock.

Spain's intervention later appeared to defuse the crisis.

Photo: Louisa Gouliamaki/AFP

What happens after the migrants disembark?

In an apparent attempt to justify Rome's stance, far-right Interior Minister Matteo Salvini said Italy's new populist government could not be forced to turn the country into "a huge refugee camp".

But UNHCR said letting a boat dock did not mean a country would have to take long-term responsibility for those on board.

"A state which allows disembarkation on its territory of rescued persons – particularly in situations involving large numbers of people – need not, in UNHCR's view, be solely responsible for providing durable solutions on its own territory."

Links :

Monday, June 11, 2018

Canada CHS layer update in the GeoGarage platform

42 nautical raster charts updated

The 'dark fleet': Global Fishing Watch shines a light on illegal catches

 Global Fishing Watch's new night light vessel detection layer uses satellite imagery from the US National Oceanic and Atmospheric Administration (NOAA) to reveal the location and activity of brightly lit vessels operating at night.
Because the vessels are detected solely based on light emission, we can detect individual vessels and even entire fishing fleets that are not broadcasting AIS and so are not represented in the AIS-based fishing activity layer.

From The Guardian by Justin McCurry

Low light imaging data being used to expose unregulated and unreported fishing on the high seas

New data is being used to expose fleets of previously unmonitored fishing vessels on the high seas, in what campaigners hope will lead to the eradication of illegal, unregulated and unreported fishing.
Global Fishing Watch (GFW) has turned low light imaging data collected by the US National Oceanic and Atmospheric Administration (NOAA) into the first publicly available real-time map showing the location and identity of thousands of vessels operating at night in waters that lie beyond national jurisdiction.
More than 85% of the “dark fleet” detections include smaller vessels that are not fitted with transponders and larger ones that have switched off their tracking systems to avoid detection, according to GFW, which launched the map on Friday to mark World Oceans Day.

The pink circles on the map represent two fishing vessels in close proximity to one another.
Global Fishing Watch’s new night light vessel detection layer uses satellite imagery from the U.S. National Oceanic and Atmospheric Administration (NOAA) to reveal the location and activity of brightly lit vessels operating at night.
Because the vessels are detected solely based on light emission, we can detect individual vessels and even entire fishing fleets that are not broadcasting AIS and so are not represented in the AIS-based fishing activity layer.

The data, collected by the NOAA’s visible infrared imaging radiometer suite, is being used to track a fleet of about 200 mostly Chinese vessels at the edge of Peru’s economic exclusion zone.
The monitoring, conducted by GFW, a non-profit organisation campaigning for greater transparency in the fishing industry, and the conservation group Oceana, reveals that about 20% of the Chinese vessels are not broadcasting via automatic tracking systems, raising suspicions they are operating illegally.
The report on the high seas activity coincides with the launch by GFW of the first ever real-time view of transshipment, which enables fishing boats to transfer their catch to refrigerated cargo vessels and remain at sea for months, or even years, at a time but still get their catch to the market.

“By harnessing big data and artificial intelligence, we’re able to generate a clearer view into the often shady practice of transshipment,” said Paul Woods, chief technology officer at GFW.
“This data is now freely available to governments, NGOs and academia to use and interrogate, and support global efforts to strengthen monitoring and enforcement to eradicate illegal fishing.”
Four countries – China, Taiwan, Japan and South Korea – account for well over two-thirds of high seas fishing, including 500 vessels belonging to Japan’s distant water fleet.
“If you could get the North Asian countries fully engaged in strengthening regulation of high seas fisheries, you would go a long way towards solving the problem,” said Quentin Hanich, head of the fisheries governance research programme at the Australian National Centre for Ocean Resources and Security.

Global Fishing Watch’s new encounters layer reveals for the first time where and when thousands of vessels are involved in close encounters at sea.
To detect pairs of vessels meeting at sea, analysts applied machine learning algorithms to more than 30 billion Automatic Identification System (AIS) messages from ocean-going boats to find tell-tale transshipment behaviour, such as two vessels alongside each other long enough to transfer catch, crew, or supplies. 

 As a major market for Chinese processed and re-exported seafood, Japan is well placed to use its influence to improve traceability and transparency, Hanich added.
“China is still in an expansionist stage when it comes to high seas fisheries, and it’s still reluctant to agree to many of the types of measures we need to put in place,” he told the Guardian.
“Japan really is the pathway to bringing China in. It’s crucial that we collaboratively develop high seas governance that China is fully engaged in.”
The need for fleets to cut fuel and other costs was highlighted in a new report claiming that fishing in more than half the world’s high seas fishing grounds would be unprofitable without billions of dollars in government subsidies.
“Governments subsidised high seas fishing with $4.2bn in 2014, far exceeding the net economic benefit of fishing in the high seas,” said the report, published this week in the journal Science Advances.
Its lead author Enric Sala, a National Geographic explorer-in-residence, said: “Governments are throwing massive amounts of taxpayer money into a destructive industry.”

Links :