Thursday, April 19, 2018

Masses of shrimp and krill may play a huge role in mixing oceans

Tens of thousands of brine shrimp swimming upward in a laboratory tank produce a large jet of water the size of the whole group, mixing shallow water with deeper, saltier water.
In the ocean, daily, vertical migrations of similarly small swimmers such as krill may cause large-scale mixing, bringing up key nutrients from the deep.

From ScienceNews by Carlyn Gramling

When it comes to tiny ocean swimmers, the whole is much greater than the sum of its parts.
Ocean turbulence stirred up by multitudes of creatures such as krill can be powerful enough to extend hundreds of meters down into the deep, a new study suggests.

Brine shrimp undergo a daily, vertical migration, rising up at night to find food in surface waters and diving down during the day to hide from predators.
In the ocean, such migrations can span hundreds of meters.
photo : Isabel Houghton

Brine shrimp moving vertically in two different laboratory tanks created small eddies that aggregated into a jet roughly the size of the whole migrating group, researchers report online April 18 in Nature.
With a fluid velocity of about 1 to 2 centimeters per second, the jet was also powerful enough to mix shallow waters with deeper, saltier waters.
Without mixing, these waters of different densities would remain isolated in layers.

The shrimp represent centimeter-sized swimmers, including krill and shrimplike copepods, found throughout the world’s oceans that may together be capable of mixing ocean layers — and delivering nutrient-rich deep waters to phytoplankton, or microscopic marine plants, near the surface, the researchers suggest.

“The original thinking is that these animals would flap their appendages and create little eddies about the same size as their bodies,” says John Dabiri, an expert in fluid dynamics at Stanford University.
Previous work, including acoustic measurements of krill migrations in the ocean (SN: 10/7/06, p. 238) and theoretical simulations of fluid flow around swimmers such as jellyfish and shrimplike copepods (SN: 8/29/09, p. 14), had suggested that they may be stirring up more turbulence than thought.


Swarms of tiny oceanic organisms known collectively as zooplankton may have an outsize influence on their environment.
New research shows that clusters of centimeter-long individuals, each beating its tiny feathered legs, can, in aggregate, create powerful currents that could potentially mix water over hundreds of meters in depth.
This effect could potentially influence everything from distribution of ocean nutrients to climate models.

In 2014, Dabiri coauthored a study that debuted the laboratory tank setup also used in the new research.
That paper noted that migrating brine shrimp created jets and eddies much larger than themselves.
“But there was skepticism about whether those lab results were relevant to the ocean,” Dabiri says. The 2014 study didn’t account for how ocean water stratifies into layers that don’t easily mix, due to differences in salinity or temperature.
It wasn’t clear if shrimp-generated turbulence could be strong enough and extend deep enough to overcome the physical barriers and mix the layers.

Brine shrimp illuminated by an LED array swim upward in a water tank (4x speed)
“Individually, we are one drop. Together, we are an ocean,”
said the Japanese writer Ryunosuke Satoro.  

The new research used a 1.2-meter-deep tank and a 2-meter-deep tank.
Each held tens of thousands of wiggly brine shrimp in two layers of water of different densities.
The researchers used LED lights to prompt the shrimp to migrate upward or downward, mimicking the massive daily, vertical migrations of krill, copepods and other ocean denizens.
The shrimp migrated in close proximity to one another – and that helped to magnify their individual efforts, the scientists found.

“As one animal swims upward, it’s kicking backward,” Dabiri says.
That parcel of water then gets kicked downward by another nearby animal, and then another.
The result is a downward rush that gets stronger as the migration continues, and eventually extends about as deep as the entire migrating group.
In the ocean, that could be as much as hundreds of meters.

“At the heart of the investigation is the question about whether life in the ocean, as it moves about the environment, does any important ‘mixing,’ ” says William Dewar, an oceanographer at Florida State University in Tallahassee.
“These results argue quite compellingly that they do, and strongly counter the concern that most marine life is simply too small in size to matter.”

 Spring has sprung in the North Atlantic Ocean!
This vibrant phytoplankton bloom was captured through cloudy skies by Aqua/MODIS on March 27th. (NASA)

The team’s finding opens the door to a host of interesting questions, Dewar adds.
Ocean mixing is an important part of the global climate cycle: It churns up nutrients that feed phytoplankton blooms and aids the exchange of gases with the atmosphere.
Adding biologically driven mixing to physical processes in the ocean makes the equation even more complex, he says.

The next step will be to try to observe the effect at sea, using shipboard measurements, Dabiri says.
“Previous studies looked for turbulence or eddies on the scale of the animals’ size,” he says, instead of large downward jets.
“This paper tells us for the first time what to look for.”

Links :

Wednesday, April 18, 2018

Secrets of the sea bed: Hunt for Stone Age site in North Sea

This is the survey plan.
The colored area is bathymetric data of the sea floor.
(twitter.com/BrownBank2018)
From BBC by Laurence Peter

British and Belgian scientists are exploring the sea bed off Norfolk hoping to find evidence that Stone Age people lived there when it was still dry land.
In recent years, some trawler crews and researchers have found prehistoric animal bones and basic stone tools in North Sea sediment.

 The RV Belgica: Exploring new frontiers under the North Sea

The team on the Belgian ship RV Belgica aims to map the Brown Bank area, a sand ridge about 30km (19 miles) long.
Mesolithic people are thought to have lived there in about 10,000-5,000BC.
"We suspect that the bank is on the edge of a large prehistoric lake, where you would expect settlements," said Prof Vince Gaffney, an archaeologist at the University of Bradford.
Despite the prehistoric finds from the North Sea bed, so far no Mesolithic settlement has been found in that vast area, which flooded after 6,000BC as the Ice Age glaciers retreated.
Eventually the British Isles were cut off from the continent.

Sediment cores are collected in the quest for signs of Stone Age life 

 When the coast of continental Europe reached as far north as Norway, at the end of the Ice Age, the sea level was about 120m (394ft) lower than today.
"Areas under the North Sea now would have been the best to live in during the Mesolithic [period] - prime real estate, because the coastlines then had fish, birds, fresh water. But it is terra incognita," Prof Gaffney said.
Brown Bank is about 100km (62 miles) from the Norfolk coast.
It used to form part of a vast plain known as Doggerland.


For much of the Stone Age, before the Neolithic period, humans were nomadic hunter-gatherers.
But a Mesolithic settlement was discovered at Howick village, near the Northumberland coast - evidence that as long ago as 10,000BC some communities in Britain were no longer nomadic.

EM3002 multibeam sonar revealing a strange world of sand structures beneath

Bradford archaeologists working with Prof Gaffney are aboard the oceanographic Belgian navy vessel with geologists from Belgium's Ghent University and the Flanders Marine Institute.

#Sentinel1 view palaeo-channel survey target off East Anglia coast.
(S1 data shown on top of @EMODnet bathymetric data)

 East Anglia with the GeoGarage platform (with chart derivated from UKHO material)
See all the wind farms when on station (Dudgeon Offshore Wind Farm)

Scientists have already mapped more than 45,000sq km (17,375sq miles) of prehistoric landscape under the North Sea, an area larger than the Netherlands, Prof Gaffney said.
But Brown Bank awaits detailed mapping, and then sediment core sampling, to look for DNA and other evidence of prehistoric life.
"The area is so large that complete cultures could be out there," said Prof Gaffney, whose research project is called Lost Frontiers.

This was identified as a Mesolithic axe, found in the North Sea by a Dutch fisherman in 1988 
 
Ghent University geologist Dr David Garcia Moreno said the Belgica team could collect seabed samples and video sites of interest, but the goal at this stage was to understand the underwater topography in detail.
They will use sonar and seismic equipment for that.
"We want to understand the evolution of rivers that traversed the southern North Sea.
"We think there was a Palaeolithic lake and a large river system all the way from north-west Germany south through Brown Bank to the Dover Strait," he said.

A map showing land around Britain and how it has been lost to the sea over the millennia
 
The research project, funded by the EU's European Research Council, is growing.
It still has at least two years to run.
The Belgica is quite cheap to hire and they are already looking forward to their next expedition, Dr Garcia said.
But Doggerland is not the only undersea territory yet to be mapped and explored for prehistoric remains.
Prof Gaffney says the Bering Strait, off Alaska, and Indonesia's Sunda Strait are bigger.
Who knows what prehistoric secrets lie there?

Links :

Tuesday, April 17, 2018

The shipping industry sets sail toward a carbon-free future

Restricting CO2 emissions: New IMO plan sets global standards.
(Image: Roberto Venturini)

From Grist / Wired by Maria Galluci

Cargo-shipping regulators have struck a historic deal to set their dirty fuel-burning industry on a low-carbon course.

On Friday, the International Maritime Organization agreed for the first time to limit greenhouse gas emissions from global shipping.
The nonbinding deal marks a critical shift for the sector — which, until last week, was the only major industry without a comprehensive climate plan.


From 2030, each individual vessel must reduce its emissions with 40 percent irrespective the development of world trade.
The conclusions are apparent from this photo of the end document.

Cargo ships are the linchpin of our modern global economy, transporting roughly 90 percent of everything we buy.
They also contribute significantly to planet-warming gases in the atmosphere.
If the shipping industry was a country, its total annual emissions would rank in the top 10, between those of Japan and Germany.

Left unchecked, shipping-related emissions are on track to soar by as much as 250 percent by 2050 as global trade expands, the maritime body projects.
Such a spike at sea would offset progress in carbon reduction made on land.

Yet with the new emissions targets, observers say, the shipping industry now has more than a fighting chance to clean up its act.

Without further action, ship emissions around Europe could exceed the total of EU land-based emissions by 2020, according to current trends

A difficult negotiation

The International Maritime Organization agreed to reduce emissions from global shipping by at least 50 percent from 2008 levels by 2050.
The United Nations body also pledged to pursue deeper cuts to meet the Paris Agreement’s more ambitious goal of limiting global warming to 1.5 degrees Celsius, or 2.7 degrees Fahrenheit, above pre-industrial levels.

The hard-won plan follows tense negotiations involving envoys from 173 countries at the organization’s headquarters on the banks of the Thames River in London.
The Marshall Islands and other Pacific nations doggedly pushed the most ambitious proposal on the table: a 100-percent reduction in shipping emissions within two decades, a move that would bring the sector in line with the 1.5-degree target.
The European Union also championed a plan to curb emissions by 70 to 100 percent by mid-century.

Yet other powerful voices in the room, led by Japan, favored smaller emissions cuts and much longer timelines.
The United States and Saudi Arabia, two oil-producing giants, objected outright to any emissions cap.
Meanwhile, some shipping executives warned of rising cargo costs and threats to business if aggressive targets were put in place.

“It was extremely difficult,” says Faig Abbasov, a shipping policy expert with Transport & Environment, a nonprofit advocacy group based in Brussels, Belgium.
“Almost every day, we were coming back to negotiations in the morning thinking, ‘Will it collapse today, or do we have a chance?’”

Environmental groups and industry leaders alike applauded the resulting compromise, saying it will help accelerate the shift away from high-carbon bunker fuel — the sludgy leftovers from the petroleum-refining process — toward cleaner alternatives, such as fuel cells, batteries, and sustainable biofuels.

Average share of CO2 emissions by flag state, 2013-2015

The Marshall Islands marshal a deal

Back in 2015, The Marshall Islands was the first country to urge the International Maritime Organization to adopt a greenhouse gas strategy.
It has spearheaded the charge for ambitious shipping rules ever since.

The sprawling Pacific island chain has unique authority on the matter, its officials say, because its livelihood is uniquely intertwined with the shipping industry.

The country is home to the world’s second-largest ship registry, behind Panama, with nearly 12 percent of all cargo ships flying the Marshallese flag.
And its 75,000 people depend on cargo ships to supply nearly all of their food.
Yet greenhouse-gas emissions from shipping and other industries threaten the nation’s very survival, with rising sea levels, extreme storms, and severe drought pushing islanders from their homes.

At the shipping confab, David Paul, the Marshall Islands’ environment minister, argued the final outcome could mean the difference between a “secure and prosperous life” and an “uncertain future” for children born today on the country’s low-lying coral atolls.

After the deal was struck, Paul returned to his central London hotel room overcome with relief, if not exhaustion.
“Just the fact that we were able to get a deal is historic,” he tells Grist. “We’re optimistic that at least there is a way forward.”

Still, he calls the deal the “bare minimum” of what his country could accept as climate policy.
In comparing the organization’s process to a game of baseball, he says last week’s deal is just a single. Effectively, the shipping industry is only on first base enroute to full decarbonization of the sector.
“We realized going into these negotiations that we weren’t going to come away with a home run,” he says. “It’s going to be an incremental process going forward.”

Only the beginning

Last week’s agreement is an initial strategy, with a long-term plan to be adopted in 2023 — after the organization collects emissions data from cargo ships over the period between 2019 and 2021.

In the meantime, regulators are expected to debate binding, enforceable steps that compel — not merely encourage — the industry to reduce its greenhouse gas emissions and a shift away from fossil fuels.

“What was adopted was just IMO’s long-term objective,” Abbasov of Transport & Environment says. “What will actually reduce emissions are the concrete actions. But that’s still to come.”

No specific proposals are on the table just yet, he explains, however, short-term rules will likely target emissions from existing ship operations to keep them from rising any further.
That might mean requiring crews to take steps like lowering their vessel’s operating speeds, which reduces power demand and fuel consumption — but would impact shipping time.

Mid-term measures could compel shipping companies to replace carbon-intensive fuels with cleaner alternatives, including fuel cells powered by hydrogen or ammonia — or for smaller vessels, batteries that can recharge at ports.
Taking these innovations mainstream, however, would likely require adopting “market-based measures,” such as a tax on carbon emissions.

According to a report by the International Transport Forum, an intergovernmental think tank, “Maximum deployment of currently known technologies could make it possible to reach almost complete decarbonization of maritime shipping by 2035.”

Dozens of small ships around the world are now running on hydrogen and electricity, and a major ferry line in Scandinavia is building two of the largest battery-powered ships to date.
Energy-efficient ship designs, smarter logistics systems, and “wind-assisted” technologies, such as spinning rotor sails, are also proven ways to slash emissions.

Still, many of these technologies remain prohibitively expensive for shipowners or aren’t yet available in sufficient supplies.
If every cargo ship today switched to hydrogen fuel cells, for instance, most vessels wouldn’t have enough hydrogen on board to leave the port.

Experts say the International Maritime Organization deal offers a much-needed push for the shipping industry to begin developing and investing in 21st-century technologies.

In a statement, Peter Hinchliffe, secretary general of the International Chamber of Shipping, the industry’s main trade group, summed up last week’s agreement: “We are confident this will give the shipping industry the clear signal it needs to get on with the job of developing zero CO2 fuels.”

Links :

Monday, April 16, 2018

Norway (NHS) layer update in the GeoGarage platform

135 nautical raster charts updated

Lessons learned after passenger ship hits uncharted rock

L'Austral from Ponant Cie

From Safety4Sea

In January 2017, passengers of the cruise ship L’Austral had spent the morning in small boats observing shoreline wildlife on the Snares Islands south of New Zealand.
While the master focused on recovering the boats, the ship inadvertently entered the 300-metre unauthorised zone, which the ship was not permitted to enter and struck an uncharted rock.
The hull was pierced and an empty void space was flooded.

The NZ Transport Accident Investigation Commission (TAIC) issued an investigation report

The rock with which L’Austral made contact was uncharted,
having not been detected during a hydrographic survey of the islands in 1999.

The incident

The French-registered passenger vessel 'L’Austral' arrived off the Snares Islands early on the morning of 9 January 2017.
The passengers spent the morning making shoreline excursions in rigid-hulled inflatable boats, observing the wildlife.
That afternoon the weather became unsuitable for small-boat excursions, so L’Austral rendezvoused with the boats in the sheltered water to the south of the islands to take them back on board.

 GPS position of L’Austral, ship delineation to scale 

While the master was focused on manoeuvring the ship to facilitate the safe recovery of the rigid-hulled inflatable boats, the ship drifted into a 300-metre unauthorized zone, where it contacted an uncharted rock.

Linz NZ 2411 updated raster chart (last ed. February 2018) -see Obstn Rep (2017) addition-
visualization in the GeoGarage platform.
The area where L’Austral struck the submerged rock was surveyed in 1999
to a ±50 m positional accuracy and a ±1.6 m depth accuracy.
Within these parameters it was possible that a rock pinnacle would not have been captured. 
The information captured during this survey was used to produce the paper chart NZ 2411.


A notice to mariners has been published by Land Information New Zealand (Linz) alerting mariners to the existence of an obstruction off Alert Stack, until a full survey can be conducted.
The presumed location of the obstruction off Alert Stack has been added to all paper and electronic charts. 



By the way, Linz has also edited a new ENC after the accident
(NZ 424111 New Zealand - Snares Islands / Tini Heke 25/09/2017 1/22,000)
- Linz had not created any ENC for the area of the Snares Islands at the time of the accident -
NZ424111 viewed in Olex seafloor mapping ECS which nowadays equips the ship (2018)

The rock pierced the hull in an empty void tank, which flooded with water.
The damaged compartment had little effect on the ship’s stability, and the ship was able to continue to another sub-Antarctic island before returning to New Zealand for temporary repairs.
None of the 200 passengers and 156 crew were injured.

Findings


The Transport Accident Investigation Commission found that:
  • The unauthorised zone was a Department of Conservation-controlled zone, where charts indicated dangers unsafe for ships the size of L’Austral.
  • The uncharted rock was in an area that the Commission considers was not suitable for the safe navigation of ships the size of L’Austral.
  • There are deficiencies in the way the crew worked together (bridge resource management), insufficient planning for boat recovery and inadequate monitoring of the ship’s position.
 Extract of paper chart NZ 2411, in use at the time of the accident
Note the area of overfalls, eddies and breakers depicted on the charts for the area south of Alert Stack.
Screenshot from vessel’s ECDIS after the accident.
The vessel’s primary means of navigation was the ECDIS, comprising a primary unit and a back- up planning unit.
The operator’s safety management system referred to French law requiring L’Austral to have a paper chart back-up in addition to the secondary ECDIS unit.
However, the operator had misinterpreted the legislation.
Article 221-V/19 in French law stated that back-up devices for ECDISs could be paper or electronic.
This was not a safety issue as such, as the ship had more than the minimum requirement, that being a primary and a secondary ECDIS, and a folio of paper charts.
(All three systems were up to date). 
Had this area been identified as a no-go area as the chart showed the ‘overfalls, eddies and breakers’ symbol, the ECDIS would have alarmed as the vessel manoeuvred, affording the bridge team time to take avoiding action.

Safety issues
  • Voyage planning and good bridge resource management
  • Unfamiliarity with operation of the ship’s electronic chart display and information system (Sperry VisionMaster FT ECDIS)
  • The Department of Conservation had insufficient maritime expertise applied to assessing risks, given the potentially harsh and sensitive environment in the sub-Antarctic islands and the likelihood that shipping activity will increase in future,

Recommendations

The Commission advised:
  1. That the ship’s operator improve voyage planning, bridge resource management
  2. That the ship’s operator review staff training in correct use of electronic chart display and information systems
  3. That DoC appoint a person to manage safe of navigation in the sub-Antarctic islands.
Photograph showing the CATZOC of the unofficial ENC loaded in L’Austral’s ECDIS.
The ECDIS on board L’Austral was loaded with an unofficial ENC for the Snares Islands,
which had been produced by C-MAP, a Norwegian company.
The C-MAP ENC was derived from published electronic raster navigational charts where the local hydrographic offices had not produced ENCs.
The C-MAP ENC that was in use at the time of the accident is shown in Figure above.
The CATZOC U symbols denote that the “the quality of the bathymetric data has yet to be assessed”.
This low-confidence marker was also used as an indicator that it had not been produced by the local national hydrographic office, in this case LINZ.
The provision of the C-MAP chart portfolio containing unofficial ENCs for loading into L’Austral’s ECDIS should have been accompanied by an alert, warning that some of the charts had not been produced by official hydrographic sources. 
The bridge team on L’Austral did not appreciate that the CATZOC of U shown on their ECDIS at the time of the accident indicated that it had been produced by C-MAP, not by LINZ. 

Lessons learned

The key lessons arising from this inquiry were:
  • An electronic chart display and information system is a valuable aid to navigation.
  • However, mariners need to understand fully and be familiar with all aspects of the system, otherwise relying on the electronic chart display and information system as a primary means of navigation can contribute to, rather than prevent, accidents
    Every part of a ship’s voyage must be planned, and all members of the bridge team must be fully familiar with and agree to the plan.
  • This is a cornerstone of good bridge resource management
    Good bridge resource management relies on a culture where challenge is welcomed and responded to, regardless of rank, personality or nationality.
Links :