Monday, March 19, 2018

How technology is changing humans’ relationship with the oceans

It could even be of benefit to both parties

From The Economist

In 1971 Jacques Cousteau, a French oceanographer, called for a shift in how humans see the oceans.
“We must plant the sea and herd its animals…using the sea as farmers instead of hunters,” he said.
“That is what civilisation is all about.”
Cousteau's call fell largely on deaf ears at the time.

The environmental movement was only just beginning and humans were still dealing with the sea as they always had: as hunters, who took from it what they wanted and dumped into it what they did not want.
In the past decade, however, two important developments have changed that.

First, with growing environmental awareness it has become clear that the hunter-gatherer relationship cannot continue.
And second, technology is making it possible to interact with the sea in a different way.
Underwater drones are now able to get to previously unexplorable places, such as underneath glaciers in Antarctica, to assess the impact of global warming.
New forms of unmanned, robotic boats have been developed to sail the seas gathering data on ocean temperature, pollutants, carbon-dioxide and oxygen concentrations.
It will be possible to transfer all of this data instantly back to shore from anywhere on the ocean using newly built internet infrastructure, and there are already markets for such data among weather forecasters, fisheries managers, and oil and gas companies.
New open-ocean fish farms with automatic feeders (pictured) enable more fish to be farmed in deeper waters—a way to ease the crisis of overfishing.
There are even military implications, with improved undersea surveillance making it harder for submarines to hide, thus denting their second-strike capabilities.

Transas chief executive Frank Coles’ summarises current digital and IT challenges
and urges regulators to remove barriers to technology change

Wärtsilä acquires Transas to accelerate its Smart Marine Ecosystem vision
Connecting smart ships with smart ports to deliver fundamental benefits to the marine sector.

At the root of the change is the ability to produce smaller, cheaper electronic components that use less power.
The smartphone boom has kickstarted progress in drones, robotics and small satellites that are already being as transformative in the sea as in the skies and in space.
All of this reduces the number of people involved and does away with the expense of keeping people alive on or under the sea.
So it vastly expands the volume of the ocean that can be monitored and measured, whether for fishery management or weather forecasting.
Lithium-ion batteries allow underwater drones to travel for up to 60 hours on one charge, giving them a range of about 400km.
Harvesters with pressure-resistant electronic innards will soon be used to gather ore from seabeds that were previously inaccessible.
This in turn could reduce the amount of destructive mining that takes place on land. 

There are dangers, however.
Humans have not shown much restraint in the past with new technologies that enable faster or easier extraction of resources.
So it will be crucial to regulate people’s ability to use the new technology, as well as regulating to reduce the risks already being taken.
The International Seabed Authority, for instance, is overseeing the new system to authorize mining the deep ocean floor, and is expected to approve by 2019 the first attempt to do so off the west coast of Mexico.
If such systems can be put in place, the potential for transforming human interaction with the oceans is very real, to the benefit of human beings and the oceans themselves.

Links :

Sunday, March 18, 2018

Disappearing ice


Data may encapsulate the events of a single second or many years; it may span a small patch of Earth or entire systems of suns and planets.

Visualizing data within its natural environment maximizes the potential for learning and discovery. Scientific visualization can clarify data’s relationships in time and space.
In this visualization, the issue of the declining sea ice near the North Pole is set in its natural configuration.
The visualization begins by showing the dynamic beauty of the Arctic sea ice as it responds to winds and ocean currents.
Research into the behavior of the Arctic sea ice for the last 30 years has led to a deeper understanding of how this ice survives from year to year.
In the animation that follows, age of the sea ice is visible, showing the younger ice in darker shades of blue and the oldest ice in brighter white.
An analysis of the age of the Arctic sea ice indicates that it traditionally became older while circulating in the Beaufort Sea north of Alaska and was then primarily lost in the warmer regions along the eastern coast of Greenland.
In recent years, however, warmer water in the Beaufort Sea, possibly from the Bering Strait, often melts away the sea ice in the summer before it can get older.
This visual representation of the ice age clearly shows how the quantity of older and thicker ice has changed between 1984 and 2016.

Saturday, March 17, 2018

Ant Steward : Sailing around the world alone in a tiny open boat

Ant Steward circumnavigated the world in 1992 on the tiny open boat called "Zulu Dawn"
but named "NCS Challenger" for the voyage.
In 1992 Anthony (Ant) Steward left Cape Town, SA amid warm farewells from hundreds of people. His goal: to be the first person to circumnavigate in an open boat.
The craft he selected was a Dudley Dix designed TLC 19 open cockpit day sailor.
Ant beefed it up with DIY structural upgrades, foam flotation, and rig and rudder modifications.
He had nowhere to build his boat and talked a friend into letting him do it inside his apartment.
Getting it into and out of the apartment must have been an interesting exercise.
Resin smells and woodwork noises in the early hours eventually led to an enforced removal to Royal Cape Yacht Club, where she spent the last couple of months before launching.
Many expected to never see him again and talked of his foolishness.
He said that if we thought that he was mad we should get to know his mother, then we would know where he got it from.
He had decided that he was sane and the rest of us were crazy for staying behind.
It would have been a crowded boat if we had not.
Tony Stewart lost his charts five days into the journey.
He figured that Columbus and others never had charts so he used a world map and a compass to complete the trip. 
For part of the voyage, Ant had a small video camera aboard.
This is his story... 

Friday, March 16, 2018

March 16th, 1978 : Amaco Cadiz oil spill, the day the sea turned black

 40 years ago, the oil tanker Amoco Cadiz ran aground on Portsall Rocks, 5 km (3.1 mi) from the coast of Brittany, France, on 16 March 1978, and ultimately split in three and sank, all together resulting in the largest oil spill of its kind in history to that date.
photo : Ouest France

From JerseyEvening

FOUR decades after a devastating oil spill off the Brittany coast threatened to pollute Jersey’s beaches, a special fund established in its wake is looking for more projects to support.

The Jersey Ecology Trust was set up in 1991 with £344,592, Jersey’s share of $155 million damages imposed by an American court on the Amoco Corporation, owners of the Amoco Cadiz oil tanker.

 Position of the 'Amoco Cadiz' shipwreck with the GeoGarage (SHOM)
48°35.56538' N / 4°43.05597 W

The vessel ran aground off the coast of Brittany on 16 March 1978 in extreme storm conditions.
Over the following two weeks, the 223,000 tonnes of oil and 4,000 tonnes of ship’s fuel spewed into the sea in what was the largest oil spill of its kind in history at that time, posing a serious threat to the Channel Islands.

 courtesy of brepaves.free.fr

Thankfully, favourable tidal and wind conditions and rough seas – and the efforts of the Royal Navy, UK and local fishermen to disperse the 40-mile long slick – kept it at bay.


Deputy Scott Wickenden, chairman of the Ecology Fund, said: ‘The Amoco Cadiz spill had a devastating impact on wildlife and marine habitats across the Channel.
However, through the insight and hard work of Islanders who helped establish the Ecology Fund, some good has come out of it.
‘The projects it has helped fund over the years have addressed some of the ongoing environmental issues Jersey faces, such as declining habitat, and impact of development and commercial exploitation, and inspired and educated a new generation.’

 photo Portsall : Ouest France

More than £150,000 has been paid out since 1991 to almost 150 local projects.
These have included a nature garden at Mont à l’Abbé School, Birds on the Edge project to revive declining farmland bird numbers, a study of the local red squirrel population and woodland management training for Jersey Trees for Life.
Mont à l’Abbé School head teacher Liz Searle said: ‘We are grateful to the Ecology Fund for giving us a donation of £1,300 last year to enable us to carry out maintenance in the forest school area, so the children could continue to use this wonderful learning space.’


The threat to the islands from the Amoco Cadiz disaster was over by the end of March 1978.
The islands escaped relatively unscathed but dead birds and tar continued to be washed up on Jersey’s and Guernsey’s beaches for many months.


However, it took many years for the Brittany coast to recover.
By the end of April 1978, the slick had contaminated almost 200 miles of coastline, clogging holiday beaches with a thick black layer of crude oil, contaminating shellfish stocks and killing at least 20,000 sea birds and millions of molluscs, sea urchins and clams.
The clean-up operation involved 6,000 French soldiers and thousands of volunteers.
Some beaches had to be cleaned six times and traces of the pollution can be seen to this day.

Links :

Thursday, March 15, 2018

Warmer, saltier polar water could change global ocean currents

Visualization showing global ocean currents from Jan 01, 2010 to Dec 31, 2012
at sea level then at 2000 meters below sea level.
Credits: NASA's Scientific Visualization Studio

From Phys by Catherine Collins

Melting ice shelves are changing the ocean's chemistry at the South Pole and the result could be a change in global currents and increased glacial melt, according to scientists who are creating maps to feed into climate change models.

At the North and South Poles, cold dense water sinks, powering the so-called global ocean conveyor belt, a complex system reliant on heat transfer and density that drives ocean currents throughout the world.


When ice shelves melt, they dump freshwater into the sea which lightens the salty water.
Credit: Flickr/NASA ICE, licensed under CC BY 2.0
This system regulates regional climates but is threatened when large amounts of freshwater – such as glacial ice – fall into the sea.
Ice shelf melt means that more glacial ice will be dumped into the ocean, and this risks switching off the conveyor belt, because diluted, less dense saltwater is less likely to sink.In the Antarctic, at depths between 500 and 2000 metres, a surprisingly warm salty water mass can be found, called Circumpolar Deep Water.
At certain points under Antarctica, this warm water comes into contact with the underside of the ice shelves and melts the ice.
If more warm salty water is reaching the bottom of the ice shelves than in previous years, this could fuel an increase in ice-shelf melt.

Dr. Laura Herraiz Borreguero of the University of Southampton, UK, and coordinator of the OCEANIS project, is tracking the movements of this warm salty current, to see if there are any fluctuations or changes compared to previous years.

By analyzing and comparing data collected by other researchers, she has discovered that in the last 20 years, the warm salty water current has become more commonly found.
The effects are even more pronounced in the inhospitable East Antarctica region, a part of the continent that is generally less well-researched than West Antarctica, as it's much more difficult to access.

This visualization shows ocean surface currents around the world during the period from June 2005 through December 2007.
The goal was to use ocean flow data to create a simple, visceral experience.
This visualization was produced using model output from the joint MIT/JPL project: Estimating the Circulation and Climate of the Ocean, Phase II or ECCO2 (http://ecco2.org).
ECCO2 uses the MIT general circulation model (MITgcm) to synthesize satellite and in-situ data of the global ocean and sea-ice at resolutions that begin to resolve ocean eddies and other narrow current systems, which transport heat and carbon in the oceans.
ECCO2 provides ocean flows at all depths, but only surface flows are used in this visualization.
The dark patterns under the ocean represent the undersea bathymetry.
Topographic land exaggeration is 20x and bathymetric exaggeration is 40x.
credit NASA

Speed bumps

Because ice shelves act as speed bumps for glacial ice flow and slow down the rate at which Antarctic glaciers reach the sea, an increase in ice-shelf melt would mean that glaciers could dump vast amounts of freshwater ice into the ocean unchecked.

'If we lose (the ice shelves), the speed of the glaciers could be four to five times faster,' said Dr. Herraiz Borreguero.

Her next challenge is to determine precisely what impact the change in circumpolar deep water will have.
'What I'm looking at now is how this alters the properties of the water around Antarctica, also in relation to the Southern Ocean circulation,' she said.
'Improving our knowledge of ice shelf-ocean interactions is a critical step toward reducing uncertainty in projections of future sea level rise.'

Ocean circulation is also being studied by Dr. Melanie Grenier of the Centre National de la Recherche Scientifique (CNRS), France, who coordinates the GCP-GEOTARCTIC project.
The project is part of a multinational collaborative effort called GEOTRACES that aims to better understand global ocean circulation and marine cycles by examining the distribution of dissolved and particulate chemical elements suspended in the water column.

Particle concentrations, distributions and exchanges can tell scientists a lot about what's going on in the water column.
Certain water masses have distinct properties, for example being nutrient-rich, or nutrient-poor, warm, cold, salty or fresh.

 Particles of ash from ancient volcanic eruptions are helping tie together climate records from different sources.
Credit: National Science Foundation/Josh Landis

Thorium-230

Dr. Grenier uses a chemical tracer called thorium-230 to monitor the volume of particles and has found that the composition of water at the North Pole is changing.
'The Amerasian Arctic exhibits lower concentrations of this geochemical tracer than in the past, consistent with the increasing trend of sea ice retreat and a subsequent increase of particle concentrations.'

One of the reasons for this is a decrease in ice cover.
Less ice means that more light can enter the ocean and that more life can develop, leading to an increase of marine particles.
Less ice also means more interaction with the atmosphere, notably with the wind, which can increase the mixing in the ocean, and so particles lying in the sediment are re-suspended into the water column.

While this is not necessarily damaging by itself, it is indicative of changes in ocean circulation and could affect the global ocean conveyor belt.
However, it's not known how sensitive that system might be to change, so scientists will have to continue to monitor the situation.

Both OCEANIS and GCP-GEOTARCTIC intend to create maps based on their research – for OCEANIS, detailing the points where warm water reaches Antarctic ice shelves, and for GCP-GEOTARCTIC, a map of global thorium-230 distribution, with input from other GEOTRACES scientists.

Ocean Currents and Sea Ice from Atlas of World Maps,
United States Army Service Forces (1943)

Models

These will be used to develop better-informed models to predict how the planet should react to changes in climate.
The models are also being enhanced by researchers who are aligning climate records from marine sediments and ice by using fine particles of volcanic ash as a common thread.

Vertical cylinders of marine sediment and ice, known as cores, are used by geologists to determine what past climates were like.
As ice freezes or sediment settles, they trap air, particles and fossils that provide clues to the climate at that time.
But, it can be difficult to match a particular piece of a marine sediment core to the corresponding time period of an ice core.

Dr. Peter Abbott of Cardiff University, UK, and the University of Bern, Switzerland, runs a project called SHARP to develop a method of doing just that.

'The technique that I'm using is called tephrochronology,' he said.
'We trace particles from past volcanic eruptions between the ice and the marine cores.
If you can find the same eruption, then it can act as a tie-line between those records as the particles were deposited at the same time in both environments.'

Dr. Abbott uses laboratory methods and optical microscopy to scan the cores and identify ash layers hidden within the ice and marine cores.
Each individual volcanic event leaves a unique chemical fingerprint on the material it expels, which means researchers can use the ash to correctly match up the ice cores and the sediment cores, giving scientists more accurate information about past climates, and consequently improving the predictive models.

'If we can explain how the climate has changed in the past, it gives us a better understanding of how it might be forced in the future,' said Dr. Abbott.

Links :