Monday, September 25, 2017

Today in technology: raising a ladder to the moon, under the sea


From Pulse by Brad Smith & Carol Ann Browne

Today, September 22, 2017, business and government leaders from around the world gather in Virginia Beach to unveil a modern-day marvel on the ocean floor: a 4,000-mile-long cable stretched between North America and Spain that can transmit eight times the volume of the U.S. Library of Congress, in one second.
Marea – named for the Spanish word “tide” – is the first subsea cable connecting the United States and Spain.
Completed by Microsoft, Facebook, and Telxius, Marea establishes a faster and stronger telecommunications link not only to Europe, but to the next billion internet users that will come from Asia, Africa, and the Middle East.


It took more than five months for engineers and the crew aboard the CS Dependable to load and lay Marea along the seabed, which in spots plunges to depths of more than 17,000 feet.
A daunting feat today, but downright unthinkable 150 years ago when American financier Cyrus Field first set out to connect the New World with the old via an undersea wire.
News stories at the time deemed his ambitious attempts “only one degree, in the scale of absurdity, below that of raising a ladder to the moon.”


It’s a fitting day to recall not just the enormous engineering innovation that went into this first subsea cable, but the continuing innovations that help make cables like Marea part of the critical infrastructure of our own time.

Few people before Field’s day understood the profound impact that creating a communications link between the world’s continents would have.
The War of 1812 between Great Britain and the United States, for instance, would have ended two weeks earlier – preventing 2,792 casualties at the bloody Battle of New Orleans – if news of a truce had reached troops before that battle began.

The dream of connecting Europe and the United States with a cable was born with electricity, which made possible the invention of telegraphy, the process of transmitting text or symbols through an electric current.
While inventors across Europe and the U.S. experimented with battery-powered telegraphs, American inventor Samuel Morse was inspired to develop a binary code of pulses to transmit natural language.
He demonstrated his invention in 1837, catching the eye of investor and machinist Alfred Vail, who worked with Morse to patent an electromagnetic telegraph machine that printed messages on a strip of paper.


In 1844, with the help of a $30,000 grant from the U.S.
Congress, long-distance telegraphy became a commercial reality when Morse and Vail dispatched the first Morse Code message from the Supreme Court chamber in Washington, D.C. to the B & O Railroad Depot in Baltimore, Maryland: “What hath God wrought?”
The Information Age had arrived.

 Korff Brothers - Map of the submarine telegraph between America and Europe,
with its various communications on the two continents (1857)

Less than a decade later, countries around the world were laced with extensive telegraph networks.
Communications that had taken weeks by horse and carriage now occurred instantaneously.
Telegraphy transformed how people communicated and spread news, changing forever how journalists, politicians, bankers and even military leaders conducted their business.
By the 1850s, the United States alone had 23,000 thousand miles of land-based cable, Prussia had 1,400 miles, Great Britain 2,200 miles, and France 700 miles.
By 1861, the United States was connected coast to coast by cable, bringing the fabled run of the Pony Express to an end.

Creator: Van Hoven, C.

After conquering overland communications, telecommunications pioneers set their sights on bridging the seas.
But underwater telegraphy was plagued by technical barriers, particularly by the inability to protect the wire from water.
While inventors in London and New Jersey experimented with methods to keep the cable dry, a solution was found half way across the globe, in the Malaysian archipelago, where the sap from the gutta tree proved an effective thermoplastic insulator.
When warmed, the substance, known as gutta-percha, became pliable and molded around a copper wire.
In the deep ocean, the cold water hardened it into a firm shell.
By 1851 gutta-percha was imported to the British Isles and used on a 25-mile telegraphic line connecting London to France across the English Channel.

But the experiment failed.
The insulation proved too thin, and water seeped into the cable, garbling signals before they reached the end of the line.
And within a few hours, the malfunctioning cable was snagged and severed by a curious fisherman off the coast of France.

The following year, in 1852, European engineers tried again, this time protecting the copper cable with a sheath of gutta-percha covered in hemp and incased in an iron fiber skirt.
This second cross-channel cable worked, and within five years cables connected England with France, and the Netherlands.
Soon Ireland, Corsica, Sardinia, and Italy were connected, and a line ran across the Black Sea speeding up British contact with Crimea during the Crimean War.


Back in North America, an attempt to wire Newfoundland, Canada to New York was on the verge of bankruptcy.
Desperate for an investor to save the project, the designer approached Field, who declined to invest.
But the offer got him thinking.
What if Newfoundland could be a key junction point in a new transatlantic telegraph? In 1856, he purchased the failing Newfoundland cable company, founded the Atlantic Telegraph Company and staked his fortune and reputation to bring his “outlandish” plan to life.

In 1857, two of Field’s ships set sail in the Atlantic with enough cable to wrap the globe 13 times.
Just five miles out to sea, the cable snapped.
The ship and crew returned, collected the cable and set out again.
This time, they got farther, about 335 miles out to sea, but again the cable snapped, dropping 12,000 feet to the ocean floor.
Despite the loss, Field was pleased.
The cable had maintained a continuous signal to the point where it had snapped.


Finally, on August 16, 1858, a telegraphic line of seven copper wires weighing one ton per nautical mile was successfully laid between the west coast of Ireland and Newfoundland.
It was a huge event for people on both sides of the Atlantic.
The cable officially opened when Queen Victoria sent U.S. President James Buchanan a message in Morse Code “fervently hoping that the electric cable, which now connects Great Britain with the United States, will prove an additional link between the two places whose friendship is founded upon their common interests and reciprocal esteem."

Fireworks lit up the New York skyline, accidentally setting city hall on fire.
The English response was more officious but nonetheless celebratory, as the chief British engineer on the project, Charles Bright, was given an immediate knighthood, at the age of 26.
And Field became an instant hero across the United States, regarded by many as one of the most famous and accomplished individuals of his age.

But the jubilation between the two countries was short-lived when the cable stopped functioning just a few weeks later.
Engineers soon learned that they had not yet mastered the science needed to keep a subsea cable of such length functioning properly.
Their biggest problem was the degradation or loss of the signal as it traveled such a long distance over a copper wire in deep, cold water.
This was a challenge that could be mastered only through the hard experience gained once the first trans-Atlantic cable was successfully laid.

The public, however, was less understanding.
Celebration turned to condemnation of the venture and Field’s leadership of it, and Congressional investigations and legal threats soon followed.
Some thought that the entire venture had been a fraud or a hoax.
Field found that where well-wishers previously had stopped him on the sidewalk to congratulate him, now even his friends crossed the street to avoid saying hello.
The U.S. Civil War intervened, efforts to repair the line were put on hold for several years, and the public understandably turned its attention elsewhere.


Once the Civil War ended, however, engineering efforts resumed.
Field had never given up on his dream, and the necessary technology had advanced considerably in the intervening years.
While initial efforts in 1865 failed when a ship lost the end of a cable, the following summer, in 1866, Field’s crew returned to the sea and met with success.
When the ship returned, it came “gliding calmly in as if she had done nothing remarkable, dropped her anchor in front of the telegraph house, having trailed behind her a chain of two thousand miles, to bind the old world to the new."

From the telegraph house of Heart’s Content, Newfoundland, Field sent a telegram to New York, “We arrived here at 9 o’clock this morning.
All well.
Thank God, the cable is laid and in perfect working order.”
Immediately the ship returned to sea, and four weeks later it restored the lost wire of the 1865 trip.
In one month the Atlantic secured two transoceanic cables, and a decade’s worth of effort finally paid off.

 
Hailed as the “eighth wonder of the world,” the cables created a network of almost instantaneous communications and proved to be an early catalyst of globalization.
News that previously took weeks or months to reach its destination could be relayed within hours.
As technology and cable-laying techniques continued to advance, the submarine cable network expanded, and by the early 20th century much of the world was connected by a network of cables.

In 2017, people might look back at Field and conclude that subsea cables are “old” technologies whose advances ended long ago.
They might even think that, in an age of ubiquitous wireless communication, the role of such cables is a vestige of the past.
But both views would be mistaken.

The technology of subsea cables has continued to advance in new and important ways.
One of the big leaps came in 1988, as the internet was in its infancy.
A new generation of engineers laid the first transoceanic fiber-optic cable, linking the United States, the United Kingdom, and France.
These new cables transmit information by light over glass or plastic strands that have the same diameter as human hair.
They enable data transmissions at higher bandwidths than copper cables, and signals suffer less loss over distance.

Marea cable headed towards the ocean

A cable with fiber optic strands bundled together represented a huge advance in the ability to move information around the planet.
This became a critical ingredient of what made the internet as we now know it possible.
Today more than 99 percent of international communications is routed through fiber optic cables, with much of it at the bottom of the world’s oceans.

All of this points in part to the human elements of technology, both in terms of its use and its continuing advances.
Cloud computing and artificial intelligence are reshaping not only the usage of the internet, but its role in society.

Take something like video content on the internet.
What some thought was mostly about YouTube videos a few years ago is now about a whole lot more.
The future of healthcare involves telemedicine and high-quality video connections.
The future of education often now involves high-quality distance learning, either with real-time video connections or on-demand streaming.
The future of business and job growth often involves companies based in one state or country opening an office or factory in another – and communicating in real time.
The MAREA cable itself will play a role, for example, in enabling Sanjo, a tools company headquartered in Barcelona, to open a factory and employ people in Virginia Beach.

Marea colled on a ship

Given all of this, it’s perhaps no surprise that Cisco estimates that by next year one million minutes of video content will move across the internet every sixty seconds.
Broadband connectivity has become a necessity of life.
It helps explain why Microsoft has invested to build one of the largest data center campuses in the world in Boydton, Virginia, where we meet the increasing cloud needs of businesses and consumers alike with services that range from enterprises using Azure and Office 365 to consumers connecting on Skype, Xbox Live, and so much more.
It also explains why we feel so strongly about causes like closing the broadband gap for the 23.4 million Americans who live in rural counties that lack this connectivity.

This also helps explain why Marea’s added subsea cable capacity across the Atlantic comes at a critical time.
Submarine cables already carry 55 percent more data across the Atlantic than trans-Pacific routes and 40 percent more data than between the U.S.
and Latin America.
Without question the demand for even more data flows across the Atlantic will keep growing.

The human dimension is not only important in the need for more subsea cables, but in the work needed to put them in place.
A venture like Marea takes more than a village, with work required in multiple countries.


This work started with great engineering.
Marea builds on many prior advances and takes them farther than ever before.
For example, it takes a new step in addressing the technology challenge that has plagued every subsea cable since the time of Cyrus Field, namely the degradation of a signal over a long distance under deep and cold water.
With Marea, engineers at Microsoft, Facebook, and Telxius, working with experts at cable suppliers, redesigned the workings of underwater repeater stations to reduce this decibel loss even more for the light traveling through fiber optic cables.
And the three companies invested in innovative on-shore electrical supplies that will power the repeater stations across the Atlantic, enabling the use of eight fiber optic pairs rather than the usual six.
In short, it added two more lanes to the information super highway.

Like so many infrastructure investments, Marea required important collaboration between the private and public sectors.
Authorities in the Spanish Government played an important role in facilitating the application for the installation permit for the cable landing in the Bilbao region, which was issued after approval by multiple ministries of the national government with strong support from the region.
Similarly, the U.S.
landing required approval by four distinct parts of the federal government in Washington, D.C., with the active involvement of local and state authorities in Virginia itself.
These steps easily could have required many years.
Thanks to strong communication and collaboration, government processes that began in 2015 have led to a finished cable just two years later.


This strong partnership made it possible for the CS Dependable to start laying the cable this year.
At an average depth of 5,000 meters, the ship had to lower Marea’s cable to a greater depth than Mount Rainier, near Seattle, is tall.
After taking 90 days to load the massive cable on deck, the ship completed its work after 62 days at sea.

While all this involved a feat of modern engineering, some things never change, even over 150 years.
As in Field’s day, every good ship needs a great crew.
The Dependable had a crew of 60, representing five countries.
And, a good crew needs to eat well.
It’s therefore perhaps not a surprise that the laying of the Marea cable involved not only the latest in fiber optic cable and repeater stations, but also 11,000 meals.

This too required a variety of supplies – including 632 jars of peanut butter.

As today illustrates, subsea innovation and technology have marched forward with continuing advances over a century-and-a-half.
Usually on a full stomach.

Links :

Sunday, September 24, 2017

Saturday, September 23, 2017

30 days timelapse at sea

30 Days of Timelapse, about 80,000 photos combined.
1500GB of Project files.
Sailing in the open ocean is a unique feeling and experience.
Route was from Red Sea -- Gulf of Aden -- Indian Ocean -- Colombo -- Malacca Strait -- Singapore -- South East China Sea -- Hong Kong
0:32 Milky Way 0:53 Sirius Star (I think) Correction: Jupiter the planet according to some viewers 1:17 Approaching Port of Colombo 1:45 Cargo Operation 2:08 Departure Colombo with Rainstorm 2:29 Beautiful Sunrise 3:13 Lightning Storm at Malacca Strait and Singapore Strait 3:29 Clear night sky Milky Way with lightning storm 4:01 Camera getting soaked 5:09 Arrival Singapore 5:56 Departure Singapore 6:20 Moon-lit night sky 6:48 Another Sunrise 8:30 Headed due north and you can see Ursa Major rotating neatly around Polaris. 8:36 Squid Boats 8:54 Chaotic Traffic 9:15 Arrival Hong Kong
 

Friday, September 22, 2017

How oceans are being used to cool massive data centres

Google's Hamina data centre is one of many that the company operates across the globe to handle 40,000 search queries a second.
Image: Google

From Motherboard by Paul Tadich

At a state-of-the-art Google server farm in Finland, the waters of the Gulf soothe red-hot microprocessors.

As the number of people around the world who are connecting to the internet continues to mushroom, the physical infrastructure necessary to support all that data is being upgraded and improved.
The International Telecommunication Union estimates that by the end of this year, 47 percent of the global population will be online.
Earlier this year, Google estimated it handles, on average, about 40,000 search queries every second.

Tech giants like Microsoft and Google are forever updating their data centres—the giant server farms that handle every download and search query thrust into the ether.
As the demand for these centres grows, the innovation that goes into building them gets increasingly more sophisticated.

Find out about Google's newest data center currently under construction in Hamina, Finland.
The  data center features an innovative sea water cooling system.

As the number of people around the world who are connecting to the internet continues to mushroom, the physical infrastructure necessary to support all that data is being upgraded and improved.
The International Telecommunication Union estimates that by the end of this year, 47 percent of the global population will be online.
Earlier this year, Google estimated it handles, on average, about 40,000 search queries every second.

Tech giants like Microsoft and Google are forever updating their data centres—the giant server farms that handle every download and search query thrust into the ether.
As the demand for these centres grows, the innovation that goes into building them gets increasingly more sophisticated.

The facility mixes warm seawater returning from the heat exchangers with colder water from the Gulf, mitigating environmental damage.
All images from Google

Microsoft attempted to reconcile the overheated output with population proximity by launching an experiment in 2015 called Project Natick.
Since 50 percent of the global population lives near a coastal area, they would use the cooling power that can be obtained from seawater.
Natick involved submerging a self-contained data centre underwater as a test case to see if submersible cloud computing is a viable technology.

Microsoft is researching ways to move power hungry and heat-prone data centers underwater.

The goals of Project Natick were twofold: to determine if ocean waters off the coast of California, at a depth of hundreds of metres, could be used in a heat-exchange system to draw off the thermal energy generated by the humming microprocessors in a submerged data centre; and to determine if wave energy could be captured to provide some of the power needed to crunch the massive quantities of data being handled by the underwater system.

Racks and racks of servers hum away at a Google data centre.

Natick was declared a success by Microsoft and they say they have plans to expand the program, but they are keeping the details of the next phase of the project a secret.
They refused to discuss their future plans with Motherboard.

A few thousand kilometres to the northeast, Google has been running a seawater-cooled data centre near the Finnish city of Hamina since 2011.
The idea may be less radical than operating an internet facility deep beneath the waves, but Google's Hamina operation has shown that it's possible to run a power-hungry data centre with minimal environmental impact.

Google's Hamina centre started life originally as the Summa paper mill, an industrial facility built in the 1950s.
Nestled on a quiet bay in the Gulf of Finland, about 130 kilometres northwest of Helsinki, the former mill features a huge seven-by-four-metre tunnel that runs under one of the buildings and directly into the Gulf.
Google opened the data centre after a €200 million investment ($240 million USD) that took advantage of the mill's unique architectural feature.

"The data centre here is one of the largest data centres in the world—if not the largest—to be using seawater as a coolant," said Arni Jonsson, senior facilities manager of the Hamina centre, on the phone from the site.
The tunnel is connected to a massive intake chamber that feeds directly into the centre's cooling system.
From here, the water is drawn by pumps into a series of heat exchangers, sucking the thermal energy from the racks of servers inside the centre before it's discharged back into the Gulf.
When the water returns, it's a few degrees warmer, and actually cleaner, than it was when it went in.
"It's all free-flow," said Jonsson.
"We don't use any energy in getting the water from the sea."

A group of Google employees engages in some ice fishing on the property of their data centre near Hamina, Finland

High water temperatures around power plants that occur when warmer water re-enters the ecosystem, for example, have been shown to result in algal blooms and dead fish zones.
But at Hamina, the outgoing water is mixed with seawater at the original temperature so this effect is mitigated.
"We were concerned with the impact of this heat coming back into the bay on the fish living there," said Jonsson.
"We are doing a study where we measure the impact of the site on the fish, the quantity of the fish.
So far, the impact has at least been positive.
We have seen an increase in the fish population." In addition, no chemicals are used in the heat-exchange process, according to Jonsson.

Other environmentally-conscious organizations are looking into more radical concepts for data centre design.
Nevertheless, a new effort is underway underscoring the delicate balance between industry and nature.
These data centres need to exist and we need to understand how they interact with their local environments.

One resource that all data centres require is vast amounts of water to cool their overheated circuits.
Whether it comes from a huge gulf or not, it's incumbent on us to ensure it's managed responsibly.

Links :

Thursday, September 21, 2017

The fishing wars are coming

The Indonesian navy scuttles foreign fishing vessels caught fishing illegally in Indonesian waters near Bitung, North Sulawesi, on May 20, 2015.
(Antara Foto/Reuters)

From WashingtonPost by James G. Stavridis and Johan Bergenas

James G. Stavridis was the 16th supreme allied commander at NATO and is dean of the Fletcher School of Law and Diplomacy at Tufts University.
Johan Bergenas is senior director for public policy at Vulcan Inc.

Lawmakers are finally catching up to something that the Navy and Coast Guard have known for a long time: The escalating conflict over fishing could lead to a “global fish war.”

This week, as part of the pending National Defense Authorization Act, Congress asked the Navy to help fight illegal fishing.
This is an important step.
Greater military and diplomatic efforts must follow.
Indeed, history is full of natural-resource wars, including over sugar, spices, textiles, minerals, opium and oil.
Looking at current dynamics, fish scarcity could be the next catalyst.

The decline in nearly half of global fish stocks in recent decades is a growing and existential threat to roughly 1 billion people around the world who rely on seafood as their primary source of protein.
No other country is more concerned about the increasingly empty oceans than China, whose people eat twice as much fish as the global average.
Beijing is also the world’s largest exporter of fish, with 14 million fishers in a sector producing billions of dollars a year.

In order to keep its people fed and employed, the Chinese government provides hundreds of millions of dollars a year in subsidies to its distant-water fishing fleet.
And in the South China Sea, it is common for its ships to receive Chinese Coast Guard escorts when illegally entering other countries’ fishing waters.
As such, the Chinese government is directly enabling and militarizing the worldwide robbing of ocean resources.

Fishing boats are put out to sea in Zhoushan, in China’s Zhejiang province, on Sunday.
The annual summer fishing ban, enforced on May 1 in the East China Sea, was scheduled to end on Friday, but Typhoon Talim delayed the start of fishing until Saturday.
(Photo: Xinhua)

The deployment of both hard and soft power to acquire natural resources is nothing short of hybrid warfare.
Countries on the receiving end of Chinese actions are responding in kind: Indonesia has blown up hundredsof vessels fishing in their waters illegally; Argentina sank a Chinese vessel illegally fishing in its waters last year; and South Africa continues to clash with Beijing over fishing practices.
Recently, Ecuador summoned the Chinese ambassador to condemn China’s fishing in Ecuadoran maritime territory following the seizure of 300 tons of illegally sourced fish.

The United States could be next.
Chinese vessels are increasingly fishing near our waters and are seeking to expand their footprint in the Caribbean.
U.S. Coast Guard Capt. Jay Caputo recently underscored this point: “It is imperative that the Coast Guard be prepared for when the Chinese fishing militia approaches the U.S. [exclusive economic zone].”

Emptier oceans also lead to increased transnational crimes.
The commander of the Navy’s 5th Fleet noted this year that “out-of-work fishermen” are often involved in weapons smuggling for countries such as Iran.
Drug traffickers also use fishing vessels around the world, including U.S. waters.
This summer in Miami, U.S. Customs and Border Protection interdicted a fishing vessel from the Bahamas carrying 150 pounds of cocaine.
These practices are rampant in Central and South America.

Debris flies into the air as foreign fishing boats are blown up by Indonesia’s navy off Batam Island, Indonesia, Feb. 22, 2016
(AP photo by M. Urip).

Dozens of international treaties govern the protection of marine resources, but significant enforcement gaps exist that substantially reduce their effectiveness.
The U.S. Navy is better suited to help close this gap than any other institution in the world.
And while the Navy already recognized in its 2015 strategic blueprint that combating illegal fishing is part of its mission, the recent congressional action provides an opportunity for the Navy and partners to increase its role.

To that end, the Navy should expand its partnership with the Coast Guard through the Oceania Maritime Security Initiative, which allows both military branches to enforce fisheries laws, combat transnational organized crime and enhance regional security in the Central and South Pacific.
This program should be replicated in other ocean territories.

The United States can also revitalize efforts by including fighting illegal fishing as part of the mission of the Combined Maritime Forces, a voluntary maritime security initiative with 32 member nations that operates to combat terrorism and piracy and provide overall maritime security.
Fighting illegal fishing is not part of the group’s mission, but in light of the geostrategic challenges associated with it today, member countries should reconsider its inclusion.

 Dead sharks are found in a ship’s hold, at sea, off the coast of Com in East Timor, in this undated photo made available by the Sea Shepherd Conservation Society on September 15.
The environmental protection group said it led East Timor police to a Chinese-owned fishing fleet with an allegedly illegal cargo of sharks.
China’s boats do contribute significantly to illegal fishing but – at least from China’s perspective – not in Southeast Asian countries’ claimed waters in the South China Sea.
(Photo: EPA-EFE / Sea Shepherd Conservation Society)

Diplomatic efforts must be increased as well, starting with elevating environmental-crime issues, such as illegal fishing, within the U.S. government.
President Trump began that process this year by incorporating wildlife crime as part of an executive order on combating transnational organized crime.

Trump should also recognize illegal fishing as a direct threat to U.S.
interests in his National Security Strategy this fall.
Coupled with the congressional defense authorization, this would send a strong message to countries and criminals that the pillaging of our oceans is a serious threat to the United States — one that we must confront.

Links :