Monday, September 11, 2017

Norway to spend $315M on world's first ship tunnel

The Norwegian Public Roads Administration believes floating underwater tunnels could be the key to shorter driving times in the country.
Norway is home to more than 1,100 fjords, the deep glacial water inlets that divide land masses. Getting over one means taking a ferry, and that can add hours to a car trip.
Because fjords can be up to a mile deep, building a bridge over the waterway or tunnel underneath is not very practical.
But Norwegian engineers think they can build a quicker way.
They want to float concrete tunnels up to 100 feet below the ocean’s surface.
This would allow ships to sail unobstructed by bridges.
Floating pontoons would hold the concrete tunnels in place.
Engineers hope the ambitious $25 billion project will be completed by 2035.

From CNN by Juliet Perry


Norway has unveiled plans to build the world's first ship tunnel by smashing through a solid rock peninsula.

The mile-long, 118-feet-wide tunnel will pass through the narrowest part of the Stad peninsula in western Norway, allowing freight and passenger ships to bypass the stormy, exposed Stadhavet Sea and avoid a highly treacherous part of the Scandinavian nation's coastline.
Norway has unveiled plans to build the world's first ship tunnel by smashing through a solid rock peninsula.



The mile-long, 118-feet-wide tunnel will pass through the narrowest part of the Stad peninsula in western Norway, allowing freight and passenger ships to bypass the stormy, exposed Stadhavet Sea and avoid a highly treacherous part of the Scandinavian nation's coastline.

The 118 feet wide, mile-long tunnel will carve through the Stad peninsula in western Norway
views from the GeoGarage platform (NHS charts)

"The KrÄkenes lighthouse, just south of Stad, is the meteorological weather station with the most stormy days, which can be anything from 45 to 106 days per year," says the Norwegian Coastal Administration, which announced the project.

The very high waves coming from different directions create complex and perilous sailing conditions, even after the wind has died down.
"The combination of wind, currents and waves around this part of the coastline make this section a particularly demanding part of the Norwegian coast," the administration says.
It says it hopes the tunnel will improve safety and stop ships from having to wait for bad weather to pass.

Moldefjorden in Norway, where the southern tunnel entrance is planned.

The team anticipates it will take three to four years to build the tunnel and cost an estimated $315 million.
To create it engineers will have to blast out a huge eight million tons of rock.
Passages and canals for boats have been built elsewhere in the world, but this will be the first tunnel allowing cruise and freight ships that weigh up to 16,000 tons to pass through solid rock.

The team anticipates that up to five ships will be able to pass through the tunnel every hour.
If you're wondering what might happen if two ships come nose-to-nose, it's unlikely, because there will be traffic lights.
"We are going to follow the usual standard with red and white lights to show when it is safe to pass," the team says.
The tunnel is due to open in 2023.

Links :

Norway NHS, a new layer in the GeoGarage platform

A new layer in the GeoGarage platform
© Kartverket / © Norwegian Mapping Authority 
see GeoGarage news

 Norwegian waters (Exclusive Economic Zone)
EEZs extend 200 kms from shore (unless it clashes with another EEZ).
Norway has the Svalbard Archipelago and Jan Mayen in the Arctic and Bouvet Island in the Arctic.
All their claims on them are due to their remote nature meaning that all it took was a few decades of Norwegian whalers spending time on those islands for much of the world too think: 'they can have those remote islands'.
As this map shows, that ownership does come with its perks. 

Sunday, September 10, 2017

New Zealand Linz update in the GeoGarage platform

10 nautical raster charts updated
see GeoGarage news

Water II

Water II from Morgan Maassen
An ode to the sea, which i revere most… Morgan Maassen
Water II is another fine example of his capacity to find a unique perspective of life at sea. 
Filmed in Hawaii, Tahiti, Maldives, Barbados, Indonesia, Mexico and California.

Links :

Saturday, September 9, 2017

Comparing forecast models for Irma

courtesy of Google Crisis

From WeatherNation by Meteorologist Jeremy LaGoo

There’s a lot of talk of the uncertainty of exact track of Hurricane Irma as it nears a potential U.S.
landfall.
While we do our best as meteorologists to forecast an exact path of a given storm, there are countless factors that go into determining a given path.

NASA image of Irma's Towering Clouds
The MISR instrument on NASA’s Aqua satellite is comprised of nine cameras that view Earth at different angles. By combining two of MISR’s images of Hurricane Irma, you can get a 3-D look at the storm. You’ll need red-blue glasses to see the full effect.

The best forecasters of a potential path are at the National Hurricane Center.
Forecasting tropical systems is what these men and women do, so it only makes sense that they do it well.
This is where we get our forecast cone, and if you’re looking for a potential path– this is what you should trust

Keep in mind the cone is the possible path track.
It could still stray to the far eastern or western side of the forecast cone, drastically changing the impacts of the storm on the southeastern U.S.

The Models

For those that want something more, we can take a look at the individual models that go into the complete forecast.
  • GFS: Global Forecast System. 13 kilometer grid covering the entire planet factoring in numerous variables to predict weather out to 16 days.
  • NAM: North American Mesoscale Forecast System. 12 kilometer grid covering the North American continent, with the ability to run high-resolution forecasts.
  • EURO (ECMWF) European Center for Medium-Range Weather Forecasts. 9 kilometer grid and historically one of the most accurate models in tropical forecasting.
  • BAMS: Baron Services proprietary model used by WeatherNation. 15 kilometer forecast grid used in this model run.
 ECMWF model forecasts (courtesy of NYTimes)
often considered as more accurate than GFS model

Through Saturday morning these 4 models are less than 40 miles apart.
Sitting between Cuba and the Bahamas.


By Sunday morning the different forecast movements start to become more prominent.
Still no more than 100 miles apart, there is agreement on path– speed becomes the separator.


By Sunday afternoon both the EURO and the NAM make a southern Florida landfall while the GFS and BAMS stay off the east coast of Florida.


Sunday evening both the NAM and EURO move inland while the BAMS nears the Miami coastline.
The GFS remains offshore and speeds up with no land interaction.


Monday morning the models start spreading out.
Tens of miles turn to hundreds of miles as land makes its mark on the storm’s speed.
To be perfectly honest, the faster and farther offshore the better.


By Monday evening even more so.


Your Best Bet

Prepare for the worst and hope for the best.
The most accurate forecast at any time will be the National Hurricane Center’s forecast cone.



It is updated every few hours throughout the day alone with advisories from around the region.

Hurricane Irma questions to National Hurricane Center acting Director Ed Rappaport

Links :