Monday, August 21, 2017

How hackers are targeting the shipping industry

This film looks at the subject of cyber security in the maritime industry and gives simple, clear non-technical advice for seafarers and shore-based colleagues on avoiding the most common cyber threats.

From BBC by Chris Baraniuk

When staff at CyberKeel investigated email activity at a medium-sized shipping firm, they made a shocking discovery.
"Someone had hacked into the systems of the company and planted a small virus," explains co-founder Lars Jensen.
"They would then monitor all emails to and from people in the finance department."

Whenever one of the firm's fuel suppliers would send an email asking for payment, the virus simply changed the text of the message before it was read, adding a different bank account number.
"Several million dollars," says Mr Jensen, were transferred to the hackers before the company cottoned on.


After the NotPetya cyber-attack in June, major firms including shipping giant Maersk were badly affected.
In fact, Maersk revealed this week that the incident could cost it as much as $300 million (£155 million) in profits.

But Mr Jensen has long believed that that the shipping industry needs to protect itself better against hackers - the fraud case dealt with by CyberKeel was just another example.
The firm was launched more than three years ago after Mr Jensen teamed up with business partner Morten Schenk, a former lieutenant in the Danish military who Jensen describes as "one of those guys who could hack almost anything".
They wanted to offer penetration testing - investigative tests of security - to shipping companies.
The initial response they got, however, was far from rosy.
"I got pretty consistent feedback from people I spoke to and that was, 'Don't waste your time, we're pretty safe, there's no need'," he recalls.

Today, that sentiment is becoming rarer.
The consequences of suffering from the NotPetya cyber-attack for Maersk included the shutting down of some port terminals managed by its subsidiary APM.

 CargoSmart has pulled together a Vessel Monitoring Dashboard to monitor vessels during this time of recovery from the cyber attack.

The industry is now painfully aware that physical shipping operations are vulnerable to digital disruption.
Breaking into a shipping firm's computer systems can allow attackers to access sensitive information.
One of the most serious cases that has been made public concerns a global shipping conglomerate that was hacked by pirates.
They wanted to find out which vessels were transporting the particular cargo they planned to seize.

A report on the case by the cyber-security team at telecoms company Verizon describes the precision of the operation.
"They'd board a vessel, locate by barcode specific sought-after crates containing valuables, steal the contents of that crate - and that crate only - and then depart the vessel without further incident," it states.

  The control systems on ships are often connected to the internet

But ships themselves, increasingly computerised, are vulnerable too.
And for many, that's the greatest worry.

Malware, including NotPetya and many other strains, is often designed to spread from computer to computer on a network.
That means that connected devices on board ships are also potentially vulnerable.
"We know a cargo container, for example, where the switchboard shut down after ransomware found its way on the vessel," says Patrick Rossi who works within the ethical hacking group at independent advisory organisation DNV GL.
He explains that the switchboard manages power supply to the propeller and other machinery on board.
The ship in question, moored at a port in Asia, was rendered inoperable for some time, adds Mr Rossi.

Seizing the controls

Crucial navigation systems such as the Electronic Chart Display (Ecdis) have also been hit.
One such incident is recalled by Brendan Saunders, maritime technical lead at cyber-security firm NCC Group.

This also concerned a ship at an Asian port, but this time it was a large tanker weighing 80,000 tonnes.
One of the crew had brought a USB stick on board with some paperwork that needed to be printed.
That was how the malware got into the ship's computers in the first instance.
But it was when a second crew member went to update the ship's charts before sailing, also via USB, that the navigation systems were infected.

Malware can hit a ship's navigation systems 

Departure was consequently delayed and an investigation launched.
"Ecdis systems pretty much never have anti-virus," says Mr Saunders, pointing out the vulnerability.
"I don't think I've ever encountered a merchant ship Ecdis unit that had anti-virus on it."

These incidents are hugely disruptive to maritime businesses, but truly catastrophic scenarios might involve a hacker attempting to sabotage or even destroy a ship itself, through targeted manipulation of its systems.

Could that happen?
Could, for example, a determined and well-resourced attacker alter a vessel's systems to provoke a collision?
"It's perfectly feasible," says Mr Saunders.
"We've demonstrated proof-of-concept that that could happen."

And the experts are finding new ways into ships' systems remotely.
One independent cyber-security researcher, who goes by the pseudonym of x0rz, recently used an app called Ship Tracker to find open satellite communication systems, VSat, on board vessels.
In x0rz's case, the VSat on an actual ship in South American waters had default credentials - the username "admin" and password "1234" - and so was easy to access.
It would be possible, x0rz believes, to change the software on the VSat to manipulate it.

A targeted attack could even alter the co-ordinates broadcast by the system, potentially allowing someone to spoof the position of the ship - although shipping industry experts have pointed out in the past that a spoofed location would likely be quickly spotted by maritime observers.

The manufacturer behind the VSat unit in question has blamed the customer in this case for not updating the default security credentials.
The unit has since been secured.


Safe at sea

It's obvious that the shipping industry, like many others, has a lot of work to do on such issues.
But awareness is growing.

The Baltic and International Maritime Council (BIMCO) and the International Maritime Organisation (IMO) have both recently launched guidelines designed to help ship owners protect themselves from hackers.
Patrick Rossi points out that crew with a poor understanding of the risks they take with USB sticks or personal devices should be made aware of how malware can spread between computers.
This is all the more important because the personnel on board vessels can change frequently, as members go on leave or are reassigned.

Commercial ships carry 90% of the world's trade 

But there are more than 51,000 commercial ships in the world.
Together, they carry the vast majority - 90% - of the world's trade.
Maersk has already experienced significant disruption thanks to a piece of particularly virulent malware.
The question many will be asking in the wake of this and other cases now being made public is: What might happen next?

Links :


Sunday, August 20, 2017

Total solar eclipse 21 August

What determines when we have an eclipse?
Why are eclipses rare? The moon's orbit wobbles.
Sometimes the moon's shadow is too high above the Earth. Sometimes it is too low. Other times, it is just right.

During the solar eclipse on August 21, 2017, the Moon's shadow will pass over all of North America. The path of the umbra, where the eclipse is total, stretches from Salem, Oregon to Charleston, South Carolina.
This will be the first total solar eclipse visible in the contiguous United States in 38 years.

During those brief moments when the moon completely blocks the sun’s bright face for 2 + minutes, day will turn into night, making visible the otherwise hidden solar corona, the sun’s outer atmosphere. Bright stars and planets will become visible as well.
This is truly one of nature’s most awesome sights.


The eclipse provides a unique opportunity to study the sun, Earth, moon and their interaction because of the eclipse’s long path over land coast to coast.
Scientists will be able to take ground-based and airborne observations over a period of an hour and a half to complement the wealth of data provided by NASA assets.
2017 Total Solar Eclipse - Ways to Watch




The geography of the great solar eclipse of July 14 1748, exhibiting an accurate map of all parts of the Earth in which it will be visible, with the North Pole, according to the latest discoveries 
other map of the solar eclipse in 1748

Links :

Saturday, August 19, 2017

Did you know the first ever ‘Admiralty’ chart was produced by the UKHO over 200 years ago?

Sketch of the road on the NE side of the Island Houat in Quiberon Bay by Thomas Moore
(map oriented SW up)
Published Nov. 1800

extract from : Alexander Dalrymple (1737-1808), hydrographer to the East India Company and the Admiralty, as publisher: a catalogue of books and charts, by Andrew Stanley Cook (source : core.ac.uk)
Dalrymple 'was desired to look out for Engravers &c.' and a press was in place later in the same year.
The list of charts and plans 'fit to be engraved' has not survived, but it is generally accepted that the first plate printed at the Hydrographical Office was Moore's plan of the island Houat in Quiberon Bay, with a date of November 1800 (catalogue B904 001100 Houat)

 Houat island in the GeoGarage platform (SHOM chart)


Neptune françois the first nautical atlas published in France in 1693
7e carte particuliere des costes de Bretagne

from Morbihan archives

 zoom from above
Carte de Belle-Isle et les Isles d'Houat et d'Hedic / Bellin -- 1764 -- BNF
see Rumsey collection : I /II

The Coast of Bretagne from the Penmarks to port Douelan (1702-1707)
 with zoom on Houat from Samuel Thornton
NY Public Library
 
Links :

Friday, August 18, 2017

Canada CHS update in the GeoGarage platform

99 nautical raster charts updated

Total eclipse, partial failure: Scientific expeditions don’t always go as planned



Have telescopes, will travel: English astronomers await an 1871 eclipse in India.
The Illustrated London News, 1872

From The Conversation by Barabara Ryden

For centuries, astronomers have realized that total solar eclipses offer a valuable scientific opportunity.
During what’s called totality, the opaque moon completely hides the bright photosphere of the sun – its thin surface layer that emits most of the sun’s light.
An eclipse allows astronomers to study the sun’s colorful outer atmosphere and its delicate extended corona, ordinarily invisible in the dazzling light of the photosphere.


With most of the sun’s light blotted out, an eclipse lets astronomers see some of its dimmer extended features (NASA)

But total solar eclipses are infrequent, and are visible only from a narrow path of totality.
So eclipse expeditions require meticulous advance planning to ensure that astronomers and their equipment wind up in the right place at the right time.
As the history of astronomy shows, things don’t always go according to plan for even the most prepared eclipse hunters.

Into hostile territory, at the mercy of the map

Samuel Williams, the newly appointed professor of mathematics and natural philosophy at Harvard College, was eager to observe a total solar eclipse.
He’d seen a transit of Venus in 1769, but had never had the chance to study the sun’s corona during an eclipse.
According to his calculations, a total solar eclipse would be visible from Maine’s Penobscot Bay on Oct. 27, 1780.

But reaching Maine from Massachusetts would be something of a problem; the Revolutionary War was raging, and Maine was held by the British Army.
The Massachusetts legislature came to Williams’ assistance; it directed the state’s Board of War to fit out a ship to convey the eclipse hunters.
Speaker of the House John Hancock wrote to the British commander in Maine, requesting permission for the men of science to make their observations.
When the astronomer-laden ship arrived at Penobscot Bay, Williams and his team were permitted to land but restricted to the island of Isleboro, three miles offshore from the mainland.

The morning of the big day was cloudless.
As the calculated moment of totality approached, at half past noon, the excitement built.
The sliver of uneclipsed sun became narrower and narrower.

Then, at 12:31 p.m., it started becoming wider and wider.
Williams realized, to his frustration, that he wasn’t in the path of totality after all.
They were 30 miles too far south.

After a subdued voyage back to Massachusetts, Williams tried to determine what had gone wrong.
Some astronomers, at the time and in following centuries, suggested his calculations of the path of totality were inaccurate.

Williams, however, had a different explanation.
In his report to the newly founded American Academy of Arts and Sciences, he blamed bad maps:
“The longitude of our place of observation agrees very well with what we had supposed in our calculations.
But the latitude is near half a degree less than what the maps of that country had led us to expect.”
Since half a degree of longitude corresponds to 30 nautical miles, this could explain why Williams ended up too far south.


Williams’ illustrations in his report of the eclipse.
‘Baily’s Beads’ are visible in Fig. VII on the upper right.
Memoirs of the American Academy of Arts and Sciences

Although Samuel Williams missed seeing a total eclipse, his expedition was not a total failure.
While watching the narrow sliver of sun visible at 12:31, he noted it became “broken or separated into drops.”
These bright drops, known today as Baily’s Beads, are the result of the sun’s light shining through valleys and depressions along the moon’s visible edge.
They’re named in honor of astronomer Francis Baily; however, Baily saw and described the beads in 1836, nearly 56 years after Williams observed them.

Hard to observe with smoke in your eyes

Almost a century later, in 1871, English astronomer Norman Lockyer was eager to observe a total solar eclipse.

Three years earlier, he and French astronomer Jules Janssen had independently measured the spectrum of the sun’s chromosphere; to their surprise, they found an emission line in the yellow range of the spectrum, not corresponding to any known element.



The spectrum of helium: the bright yellow line at a wavelength of 587 nanometers (nm) is the emission line seen by Janssen and Lockyer.

Lockyer boldly claimed that the emission line was from a new element that he named “helium,” after the sun god Helios.
Realizing that eclipses offered a helpful opportunity to search for more undiscovered elements, Lockyer became a strong advocate of eclipse expeditions.
He knew the total solar eclipse of Dec.
12, 1871 would pass across southern India and persuaded the British Association for the Advancement of Science to sponsor an expedition.
Wishing to show that British rule in India was linked to scientific progress, the British government chipped in £2,000, and the P&O steamship company offered reduced fares to India for the eclipse hunters.

Lockyer’s voyage to India went smoothly.
(This could not be taken for granted; in 1870, on his way to view an eclipse from Italy, Lockyer was aboard a ship that ran aground off the east coast of Sicily.)
The team set up their instruments on a tower at Bekal Fort, on the southwest Indian coast.
The morning of Dec. 12, 1871 was cloudless.
Although Lockyer was suffering from a fever (and from the effects of the opium he was taking to treat it), he was ready.

Then, during the initial phases of the eclipse, he noted odd activity in the region below the fort.
Local inhabitants were gathering a huge pile of brushwood to fuel a bonfire; apparently, by creating a bright fire on Earth, they hoped to encourage the darkening sun to become bright again.
Lockyer was alarmed; the column of smoke would have risen directly between him and the eclipsed sun, ruining his observations.

Fortunately, the local superintendent of police happened to be present; he summoned a squadron of policemen who put out the fire and dispersed the crowd.
During the now smoke-free eclipse, Lockyer made valuable observations of the structure of the sun’s corona.

To see an eclipse you must see the sun

Jump ahead to the early 20th century.
The English Astronomer Royal Sir Frank Dyson was eager to view a total solar eclipse.
He didn’t have to travel far, since the eclipse of June 29, 1927 had a path of totality cutting across northern England, from Blackpool in the west to Hartlepool in the east.
As an eminent figure in the scientific establishment and a renowned expert on eclipses, Dyson had no trouble in commanding financial support for his eclipse observations.

What he could not command, however, was the famously fickle English weather.
During the month of June, northern England averages about seven hours of direct sunlight per day; however, this comes from a mix of weather that includes completely overcast days and completely cloudless days.
Dyson didn’t know what to expect.

After checking the weather records along the predicted eclipse path, Dyson decided to observe from the Yorkshire village of Giggleswick.
As he and his team prepared for the eclipse, the location choice initially seemed dubious; for two weeks before the eclipse, the sky was completely cloudy every afternoon, at the time of day when totality would occur on June 29.

Despite the grimly unpromising weather, crowds of hopeful people converged on the widely publicized eclipse path.
Railway companies ran special excursion trains, towns along the path of totality sponsored “eclipse dances” and newspapers offered “ecliptoglasses” to subscribers.

In the end, unfortunately, most viewers along the eclipse path were disappointed.
From the errant cloud that blocked the totally eclipsed sun from Blackpool Tower to the unbroken overcast sky at Hartlepool, the weather did not cooperate.
View of the totality at Gigglesworth, taken by Frank Dyson and his team.
Plate 8, Report of the Expeditions from the Royal Observatory, Greenwich, to observe the Total Solar Eclipse of 1927 June 29.
Astronomer Royal, Monthly Notices of the Royal Astronomical Society, Volume 87, Issue 9, CC BY-NC-ND

Happily for Frank Dyson, however, the town of Giggleswick was nearly the only location along the eclipse path that had clear skies during totality.
The estimated 70,000 people who converged there, following the lead of the astronomer royal, also benefited from Dyson’s good luck.

After the eclipse, Dyson’s public statement was, by British standards, positively bubbly:
“The photographs have come out extremely well.
A very clear and striking eclipse.
Our observations went off very well indeed.”
Despite the difficulties posed by weather… and smoky bonfires… and dodgy maps… astronomers have always persevered in their quest to view eclipses.

Links :