Thursday, July 6, 2017

The giant undersea rivers we know very little about


From BBC by Richard Gray

Far below the surface of the sea, the seabed is being scoured by rivers of sediment that can flow thousands of miles from land.

The river cascades through steep-sided gorges and churns around isolated towers of rock, before winding across a vast plain beyond.
It is a torrent to rival the mighty Colorado River that carved out the Grand Canyon.

Yet this dramatic natural wonder has never appeared in any tourist photographs, nor does it feature on any maps.
The reason?
It lies two miles (3.2km) beneath the surface of the Pacific Ocean.

Stretching away from the coast of California, the Monterey Canyon has been shaped over millions of years by this bizarre “undersea river”.
Beyond the mouth of the canyon, the flow has cut a valley into the sea floor that extends for nearly 200 miles before spilling onto the abyssal plain of the deep ocean.

Similar channels can be found etched into seabeds all over the world.
They have been found off the coasts of Greenland, the Amazon, the Congo and Bengal, to name a few.
The largest are several miles wide and run for thousands of miles out into the ocean depths, where they provide vital sustenance to the creatures living there.
But these undersea rivers are among the least understood phenomena on our planet.


The canyons can flow far out to sea (Credit: David Fierstein/MBARI)

In many ways, undersea rivers are similar to the rivers we see on land.
They have banks on either side. Smaller rivers called “tributaries” feed into larger ones.
The rivers carve valleys into the sea floor.
They follow meandering paths and can even change course, resulting in abandoned sections similar to oxbow lakes.
Ultimately, they spill out onto the abyssal plain in the ocean depths in similar ways to a river estuary.

“If you drained all the water away, it would look exactly like a river system with bends and meanders, except there are no trees along the banks,” says Dan Parsons, a sedimentologist at the University of Hull, UK, who travels the world to study undersea rivers .

These submarine channels were almost completely unknown until the 1980s, when sonar mapping of the seafloor began to reveal them.
Many extend out into the ocean from the mouths of major rivers like the Amazon and the Congo, following tortuous routes across the thick sediment on the seafloor.
At the time, scientists compared them to mature river systems on land, such as the lower reaches of the Mississippi River.

The underwater canyons cut into the continental shelf can be compared to the headwaters of a river system. From there, a river will spill into large meandering channels that extend out on the floor of the continental slope and the continental rise.

There, the channels tend to be bounded by huge levees that have built up over time.
Some of these levees stand hundreds of feet above the sea floor.
“These submarine channel systems are some of the biggest in the Solar System,” says Parsons.

However, it was only in the late 1990s that it became clear how these channels were created.

Scientists drilled into the sediments in the channels, and the sediment cores indicated they had formed through repeated deposits of sediment that appeared to spill down the channels.

Rather than flows of fresh (or at least salty) water, undersea rivers are slurries of silt and sand that cascade along channels on the seabed.
Each particle tumbles through the water under its own weight.
A new river starts on the continental shelf like an avalanche in the mountains, picking up speed and momentum as it moves until it flows like a liquid.
Once started, an undersea river can flow for weeks and even months at a time, moving the same amount of sediment in one go that all the world’s land-based rivers transport in an entire year.
“The flows that come down them are more like snow avalanches or volcanic pyroclastic flows,” says Parsons.
However, studying these processes in the deep sea has proven difficult.
“When you compare them to what we know about rivers on land, we have practically no measurements of these flows under the sea,” says Parsons.


Despite the intense cold and pressure, life seems to thrive near the flows (Credit: MBARI)

Part of the reason for this is the difficulty in studying an environment at that depth. Many of the channels are found more than a mile (2km) down and can flow to depths of 2.5 miles (4km).
To reach these inky depths requires specialised remote controlled deep-sea submarines.

Worse, the rivers only flow some of the time.
After a flow has passed, the channel may be inactive for weeks, months or even years.
It can cost over £25,000 a day to use a research vessel that can launch remotely operated vehicles (ROVs) to explore the deep ocean, so it is hardly surprising few scientists have been able to study these undersea flows.

“People have just not had the capacity to go and look before,” says Jeff Peakall, a sedimentologist at the University of Leeds, UK.
“In fact, we have better resolution of the far side of the Moon than we do under our oceans. We know remarkably little about these underwater rivers.”

Instead, for many years researchers had to rely on laboratory simulations, mixing seawater with building plaster or mud in large tanks to create turbidity currents.
Footage of these experiments reveals that the currents are similar to avalanches or pyroclastic flows, as the sediment billows and surges along the bottom of the tanks.

Now a small band of intrepid researchers are beginning to explore these deep-sea channels and learn more about how they work and what lives around them.
“We are now at the stage where the technology is letting us measure the flows in the real world at full scale,” says Parsons.
“That has not been possible until relatively recently.”
“In Monterey, we are repeatedly mapping the canyon to see how it changes over time,” says Parsons. His team is using autonomous underwater vehicles to show how the flows are changing the seafloor.
Parsons is also conducting similar research off the coast of British Columbia.
There, meltwater from glaciers and snow in the mountains delivers sand and mud to a delta at the top of a fjord known as Bute Inlet, which will then collapse and flow down the submarine channel in a powerful “turbidity current” – the name given to these cascades of sediment laden water.

In a study published in 2010, Peakall and Parsons sent a robotic submarine down to a deep undersea channel that runs across the bottom of the Black Sea.
Here, they found another type of current is carving the river channel, this time a flow of salty water, which originally comes from the Mediterranean, spills into the Black Sea through the narrow Bosphorus strait and then into the channel.


The benthic event detectors (or Beds) are placed on the seabed, and measure the activity around them (Credit: MBARI)

Since the Mediterranean water is saltier, and so denser, than the Black Sea, it remains separate, flowing at a speed of around 4mph (6.4km/h).
Every second, around 22,000 cubic metres of water passes through the channel.

“We were trying to map the water coming out of the Bosphorus strait, to understand how flows move through undersea rivers,” says Parsons.
“It was a warm-up for looking at the really big systems driven by mud and sand in the offshore submarine channels.”

Only in the last few years have researchers witnessed an undersea mud river in the real world. In 2013, Charlie Paull of the Monterey Bay Aquarium Research Institute and his colleagues were using an ROV to explore a relatively small underwater canyon, just a few miles from the Californian coast. The ROV was tethered to a ship on the surface, around 1,500ft (400m) above.

Without warning, a turbidity current came roaring down the canyon and the ROV was caught in it. One of the ROV pilots described the experience as being like “flying an ROV in a tornado”.
The five-ton ROV was lifted off the seafloor and pushed sideways.

It beamed back video, which revealed a dense layer of muddy water surging and billowing across the canyon valley.
Clumps of kelp, torn from the seabed further upstream, could be seen rushing past. But before they could learn more, the team had to pull the ROV out of the flow, for fear it would be torn free of its tether.

A 2014 analysis by Esther Sumner of the University of Southampton showed that the sediment flow, which was 295ft (90m) thick from top to bottom, had travelled down the canyon at around 3.8mph (6.1km/h).

 The violence of the events and deep depths makes it impossible for humans to observe firsthand (Credit: MBARI)

Yet this was a relatively small flow.
Oceanographers at the Monterey Bay Aquarium Research Institute are now leading the development of new technologies to study bigger rivers.
They have developed acoustic “speed cameras”, which can measure the speed of the flows tumbling down the Monterey Canyon and into the valley beyond.

They have made “smart boulders”: beach-ball-sized instrument arrays, also known as benthic event detectors or Beds.
These can sit on the floor of the channel.
When a sediment river cascades down, they are picked up and carried along.
They send back information about how they roll, glide and lift from the sea floor.

Yet the sheer power of these enormous flows of sediment can make studying them a challenge.
In January 2016, Paull and his team lost a fixed monitoring device, along with the one-tonne tripod it was mounted on, when a powerful sediment flow swept down the Monterey Canyon at 12mph (19.3km/h).
They eventually found it, after following the pings from its beacon - three miles from its original position, almost completely buried in mud.
When they managed to pull it out, they found steel plates on the frame had been bent out of shape and ground down to a knife-edge.
A float on top of the tripod, made of carbon fibre and titanium, had also been badly eroded.
Ten months later, they lost a second tripod in a similar manner, while another event saw an entire mooring dragged four miles (7.1km) out of position.

“It is sobering to think those sort of events are going on under the seabed,” says Paull.
“When I look out of my window at the ocean, there is no sign of these powerful events taking place, but on the sea floor they are powerful enough to drag entire boulders with them.”

Faced with this kind of destructive force, it is hard to imagine much life surviving along the length of these undersea channels.
Yet some species, at least, seem to thrive.

“These sediment flows have a major impact on canyon biodiversity,” says Craig McClain of the Louisiana University Marine Consortium, who has been working with the team at Monterey Canyon. “For some types of species, this disturbance causes a boom allowing their numbers to grow quickly, while for others their numbers plummet. It depends on whether a species is a ‘weedy’ species with fast growth and reproduction or not.”

With Jim Barry at the Monterey Bay Aquarium Research Institute, McClain has shown that the channel beds teem with snails, clams, crustaceans, urchins, sea cucumbers and worms.

What’s more, beyond the safety of the canyon, the nutrients and oxygen carried by the flows seems to help life survive on the comparative desert of the ocean’s abyssal plain.
To find out what is going on, scientists have looked at sandstone that was formed from sediment flows under prehistoric oceans.
Telltale holes in the rocks suggest small worms once burrowed through the sediment.


Due to the force of the flows, the recording instruments need to be tough (Credit: Roberto Gwiazda/MBARI)

“What appears to happen is the flows not only bring oxygen and nutrients down to the deep ocean, but they also carry life with them too,” says Peakall.
“These worms are swept down from shallower depths and live in the sediment when it settles, until they run out of oxygen.”

A 2016 experiment by Sumner suggests that polychaete worms – brightly-coloured marine creatures, covered in bristles like a pipe cleaner – may be able to survive such a journey intact.

The organisms living in the sediment may also play an important role in the way these undersea rivers flow in the first place.

A 2015 study by Jaco Baas of the University of Bangor, UK, and his colleagues showed that microorganisms living in the mud help to bind it together, allowing sediment to pile up – until it fails catastrophically.
This helps explain why undersea rivers only flow periodically.

“The biggest flows are probably triggered by a failure in the sediment building up on the continental shelf,” says Peter Talling, a geologist at the University of Durham, UK. “Flooding or waves during storms can cause an underwater avalanche. Fresh water from rivers filled with sediment can also be denser than sea water, and so plunge to the bottom of the ocean.”

It now seems that something strange happens to the flows as they go downstream.
Studies of undersea rivers off the coast of the Congo show that they stretch as they go downstream.
This means an event that lasts an hour at the top can go on for days or weeks at the bottom of the channel.

One of the most active undersea sediment rivers can be found in the Nazaré Canyon off the coast of Portugal.
The river runs down a narrow channel inside the five-mile-wide (8km) canyon, before flowing across the abyssal plain nearly 2.5 miles (4km) beneath the surface, where it is contained with large levees.
Around four times a year, small flows spill down the Nazaré Canyon for a few kilometres at a time before running out of steam.
But the canyon is sometimes hit by more violent events.

“At the extreme end are what we call ‘canyon flushing’ turbidity currents,” says Josh Allin of Southampton University in the UK, who has been studying the Nazaré canyon. “These are much more violent and are capable of eroding very large volumes of sediment – tens of cubic kilometres – from the canyon and transporting it out onto the deep ocean floor. They appear to occur on hundred- to thousand-year timescales, but they have never been directly observed and we know very little about their characteristics.”


The organisms carried in the sediment may help feed other animals that flourish nearby (Credit: MBARI)

While canyon flushing turbidity currents are rare, it could still be important to understand them.
For starters, they help to lock away huge volumes of carbon in the sediment at the bottom of the ocean, slightly slowing the rise in greenhouse gases that is causing climate change.
But they can also have more immediate effects on our lives.

In 1929, 23 underwater telegraph cables were cut close to Newfoundland.
It was suggested later that an offshore earthquake had struck the nearby Grand Banks, dislodging a bank of sediment, which then roared down a channel in the continental shelf and out onto the abyssal plain.

Today, nearly all of the world’s internet and banking transactions are conducted over underwater cables, so if a lot of these cables were cut it would cause major problems.
Many of the cables connecting the US to Europe cross the path of this same underwater river channel that runs south from Newfoundland.
Scientists estimate the flow that came down that channel in 1929 reached speeds of 57mph (93km/h) and carried debris more than 683 miles (1,100km) across the sea floor.

“If we saw a repeat of that now, it could be disastrous,” says Talling.
His research is partly funded by the International Cable Protection Committee, which looks after underwater infrastructure.
“These are incredibly powerful and destructive flows,” says Parsons. “It is important we understand how they work.”

Wednesday, July 5, 2017

What happens to island nations that are lost to rising sea levels?


 published by World Economic Forum

From Inverse by Jacqueline Ronson

Earth’s political boundaries will always shift as conflict rises and regimes fall.
We are used to this sort of change and the out-of-date maps it produces.
But nothing in the history of human diplomacy has prepared us for what’s coming next — countries that physically cease to exist as the land they are made of is swallowed up by rising seas.

The Maldives is made up of 1,192 small coral islands with an average elevation of three feet.
Photos via NASA / Wikimedia


For low-lying nation states like the Maldives, Tuvalu, the Marshall Islands, and Kiribati, it’s not a question of if, but when.
Keeping the world to two degrees Celsius of warming, the stated goal of the Paris Agreement on climate change, would still result in 15 feet of future sea level rise, according to analysis by Climate Central.
At 16 feet, the Maldives and Tuvalu would be completely submerged.
The Marshall Islands would be 99 percent underwater, and Kiribati 97 percent.
Even a few feet of sea level rise — within the realm of possibility for this century — would devastate these countries and permanently change their landscapes.

“Life is difficult enough on these small islands, surrounded by the vastness of the ocean, without adding the challenges of sea level rise, more dangerous extreme weather, and the loss of food and fresh water resources,” write Andrew Holland and Esther Babson of the American Security Project in a recent report for the Center for Climate and Security.
The islands have made up for their small populations and poor resources by forming alliances with each other, and yet a humanitarian crisis is almost guaranteed.

Kiribati has made some effort to plan for the future, by purchasing land in Fiji that currently grows food for the people of Kiribati and may one day house them as well.
But it’s most likely that the exoduses will happen in sudden moments of crisis, when storm surges flood whole islands and poison freshwater resources.
“What we should expect is more uncontrolled migration from island to island, to cities and developed countries,” write Holland and Babson.




The island of Funafuti is one of nine that make up Tuvalu, and is home to about 6,000 people. 

Where will climate change refugees go when their homes are destroyed, and will they be welcomed when they arrive?
Will the magnitude of the crisis prompt nationalist, reactionary policies that see borders shut down and xenophobia climb?
You might say that’s already happening today, with refugees from Syria’s brutal war, set off in part by climate change, being portrayed as potential threats in the mainstream discourse of the United States, Europe, and elsewhere.

And what happens to the political entity of a nation state when its physical land is abandoned?
What rights do former inhabitants still claim to that region and the economic resources it may still hold?
Currently the island nations lay claim to an exclusive economic zone that extends 200 miles in all directions.
Who will own the rights to fish when the land is all but gone?
The international community has yet to grapple with these questions, and there will be no easy answers.


The Kwajalein Atoll is one of 29 that make up the Republic of Marshall Islands.

China has shown an increasing interest in the region, and has upped climate change aid to these countries dramatically.
One motivation could be a desire to ultimately have more say in who gets to control these island resources when the people move away.

A power struggle between countries vying for influence is possible, and preventing it will depend on a great deal of international cooperation in a forum where the ground rules have yet to be invented.


Kiritimati is the largest atoll in the Republic of Kiribati.

The recent promise of United States President Donald Trump to withdraw from the Paris Agreement ups chances that nations will look to their own interests before helping their neighbors.
The U.S., after all, is the richest country in the world and the one that has contributed the most to climate change.
If it will shirk responsibility for the damage it has wrought, why would another step up?

And the rest of the world will certainly have its own troubles.
“These problems are not unique to small, poor island nations,” write Holland and Babson.
“It is only that they will be forced to deal with them first.”


Links :

Tuesday, July 4, 2017

Plastic pollution in the world's oceans: Interactive map reveals where 5.25 trillon pieces of waste end up



This interactive map shows how much plastic is found in the world's oceans.
Most of the plastic comes from rubbish dumped into rivers, which is then carried into the sea
(Credit: Dumpark)

From DailyMail by Harry Pettit

  • Map visualises the estimated concentration of floating plastic waste in the world's oceans
  • Densities of plastic are shown as white dots around the map, each of which represents 20 kilograms (44lbs)
  • Eight million tonnes of plastic is dumped into our oceans every year, endangering marine and human life
  • The map was created to underline the issue of plastic pollution and encourage people to take action

As much as 8 million tonnes of plastic is dumped into our oceans every year, endangering marine life and, if it enters the food chain, endangering humans too.
Now, an interactive map has revealed where the 5.25 trillion pieces of plastic adrift in our oceans end up.
Densities of plastic are shown as white dots around the map, each of which represents 20 kilograms (44 lbs) of damaging ocean waste.

In the Sailing Seas of Plastic map, graphic designers at New Zealand-based data firm Dumpark visualised the estimated concentration of floating plastic debris in the world's oceans.
When zoomed out, the map seems to show that plastics in the ocean are large floating landfills, 'but as you zoom in you realise the complexity of the issue: The ocean is quite a vast surface, and similar to a starry night, there are a lot of little bright dots,' said map researcher Mr Laurent Lebreton.

The graphic reveals that the North Pacific Ocean suffers the most from plastic pollution, with an estimated 2 trillion individual pieces adrift in its waters.
This works out at around 87 million kilograms (193 million lbs) of waste in total, nearly one third of plastic pollution in all oceans.
Much of this waste is focused around China and Japan, tracing the North Pacific gyre, one of Earth's five major gyres, which are powerful circular ocean current systems caused by wind patterns and the rotation of the Earth.
The map shows that the Indian Ocean is a hot spot for global plastic pollution, with 1.3 trillion pieces of floating plastic.
Previous research has shown that as much as 60 per cent of the world's plastic waste comes from just five countries: China, Indonesia, Philippines, Vietnam, and Thailand.
This is likely the reason the North Pacific and Indian Oceans are so heavily polluted, as gyres carry waste outwards from the coasts of these nations.

The map is based on a study titled 'Plastic Pollution in the World's Oceans' from oceanographer Dr Marcus Eriksen.
According to the study, there are 5.25 trillion pieces of plastic in our oceans, enough to circulate our equator 425 times.
Dr Eriksen and his team went on 24 nautical expeditions between 2007 and 2013 across all five of the Earth's major gyres.

 Densities of plastic are shown as white dots around the graphic, each of which represents 20 kilograms (44 lbs) of damaging ocean waste

When zoomed out, the map seems to show that plastics in the ocean are large floating landfills, 'but as you zoom in you realise the complexity of the issue.
The ocean is quite a vast surface, and similar to a starry night, there are a lot of little bright dots,' said map researcher Mr Laurent Lebreton.
Pictured is the amount of plastic waste found in the Atlantic Ocean

The researchers took in 680 loads of plastic on their trip and noted down 891 visual assessments of floating waste, then crafted a statistical model to work out how plastic is spread around the world's oceans.
They found that, when added up, all of the ocean's plastics weigh more than 38,000 African elephants.
'The plastic industry suggests the only solution is through our own efforts — recycling, incineration, responsible personal waste management,' Dr Eriksen told Vox.

 The graphic reveals that the North Pacific Ocean (pictured) suffers the most from plastic pollution, with an estimated 2 trillion individual pieces of plastic adrift in its waters

The map shows that the Indian Ocean is a hot spot for global plastic pollution, with 1.3 trillion pieces of floating plastic.
Previous research has shown that as much as 60 per cent of the world's plastic waste comes from just five countries: China, Indonesia, Philippines, Vietnam, and Thailand (pictured)

'But the reality is that the industry itself needs a design overhaul - they should strive to recover 100 per cent of their products, or make them 100 per cent environmentally harmless.'
Dr Eriksen and his team also investigated what types of plastic were polluting the oceans most.
'We found an astounding number of those little balls in deodorant roll-ons,' he said.
'The bigger items tend to be solid plastic: Toothbrushes, army men, bouncy balls, milk jugs, buckets...'

The map is based on a 2014 study in which a team of oceanographers went on 24 nautical expeditions between 2007 and 2013 across all five of the Earth's major gyres.
Pictured is the field locations where count density (right) was measured for different sizes of plastic fragments (bottom left of each grid)

This image shows the numbers (right) of different sizes of plastic fragments (bottom left of each grid) that the team found.
Red indicates a high density while green shows a low density.
The team took in 680 loads of plastic on their trip and noted down 891 visual assessments of floating waste, then crafted a statistical model to work out how plastic waste is spread

But the researchers said that most of the pieces of plastic they found was in confetti-sized shreds.
Of the 5.25 trillion particles Dr Eriksen's team calculated, 92 per cent are microplastics, either broken-up bits of larger plastic items, or small pieces like facial scrub microbeads.
'Most of these microplastics are so small you can't really tell what they are,' Dr Eriksen said.
'You drag a net through the ocean and come up with a handful of plastic confetti - particles the size of fish food.'

Links :

Monday, July 3, 2017

New volcanic island unveils explosive past

A newly formed volcanic cone between the Tonga islands of Hunga Tonga and Hunga Ha‘apai erupts on 15 January 2015, releasing dense, particle-rich jets from the upper regions and surges of water-rich material around the base.
The monthlong Hunga eruption created a new island that is now the subject of study and promises to reveal new aspects of the region’s explosive volcanic past.
Credit: New Zealand High Commission, Nuku’alofa, Tonga

From EOS

A recent volcanic eruption near Tonga in the southwest Pacific created a new island, giving scientists a rare opportunity to explore the volcanic record of this remote region.

In late December 2014, an undersea volcano erupted between two small islands in the Tonga volcanic arc northeast of New Zealand, sending steam and dense ash plumes high into the air.
By the time the eruption ended about 5 weeks later, a new island had formed, eventually bridging the gap between the original islands.
Winds and ocean waves then began rapidly reshaping the newly emerged volcanic cone.

Ten months after the eruption, we visited the new island, which we unofficially nicknamed Hunga Island.
There, we attempted to characterize the volcanology of the eruption, begin tracking the rate of erosion on the new island, and assemble a history of volcanism in this region of the southwest Pacific.
Our findings reveal a shallow submarine volcanic caldera adjacent to the new volcanic island, and they highlight how incomplete the volcanic record can be at remote oceanic volcanoes.

Hunga Tonga and Hunga Ha‘apai with the GeoGarage platform
(Linz nautical chart & CNES imagery 2017)

Signs of Eruption

The uninhabited islands of Hunga Tonga and Hunga Ha‘apai lie 65 kilometers north of Nuku‘alofa, the capital city of the Kingdom of Tonga. Between 19 December 2014 and 28 January 2015, residents of Nuku‘alofa witnessed several large volcanic plumes rising from an eruption in the direction of the two islands [Global Volcanism Program, 2015], as seen in the news video below.

Newly awakened Hunga Ha'apai volcano creates large new Tongan island.
(see ABC news

The plumes were the result of an explosive interaction between seawater and magma rising from a plateau about 150 meters below the ocean surface.
The plateau is part of Hunga, a massive, submerged volcanic edifice that rises more than 2000 meters from the surrounding seafloor and the site of volcanic activity as recently as 1988 and 2009 [Global Volcanism Program, 2009].

The 2014–2015 Hunga eruption deposited material between the islands of Hunga Tonga and Hunga Ha‘apai, initially creating an isolated third island before connecting with Hunga Ha‘apai.
In less than 3 weeks, the eruption built up a circular area of land with a diameter of about 2 kilometers and a height of 120 meters.

 This oblique aerial view shows the new Hunga cone and crater on 6 November 2015, stretching between the islands of Hunga Ha‘apai and Hunga Tonga (top).
The crater rim is about 550 meters in diameter.
Credit: Brendan Hall

A Violent Volcano Under the Sea

Hunga Ha‘apai, Hunga Tonga, and a reef to their south sit on the rim of a submarine caldera known as Hunga Tonga–Hunga Ha‘apai.
The islands and reef are the only surface features betraying the presence of the largely submerged Hunga volcano (Figure 1).


Fig. 1. Water depth measurements show the Hunga edifice on which the islands of Hunga Tonga and Hunga Ha‘apai lie. Neighboring volcanoes include the active Metis Shoal.
The inset shows the Tonga archipelago’s location within the Kermadec-Tonga volcanic arc at the boundary between the Pacific Plate and the Indo-Australian Plate.
Credit: Shane Cronin

Hunga volcano is one of many volcanoes in the Tonga-Kermadec volcanic arc that formed in response to subduction of the Pacific Plate beneath the Indo-Australian Plate.

Many highly explosive eruptions along this chain have had significant regional consequences [see, e.g., Caulfield et al., 2011].
These occurrences suggest that Hunga volcano may itself have had a similarly violent past.

Past research indicates that radiating, outward dipping lava flows and pyroclastic deposits on the two older Hunga islands represent small remnants of the rim of a very large volcano surrounding a caldera structure [Bryan et al., 1972].
This volcano may have suffered catastrophic collapse or prolonged erosion, obscuring it from view.


A nautical chart recently created for Nishinoshima island has fallen behind the growth of the real island.
The red curves on the center left of the island, apart from contour lines, indicate the locations of pre-eruption coastlines.
(Provided by the Japan Coast Guard via The Asahi Shimbun)

Field Observations

In November 2015, we conducted a land and ocean survey of Hunga Tonga–Hunga Ha‘apai and the new island.
Our goals were to characterize the recent eruption and collect baseline quantitative topographic data for tracking erosion rates.
We also wanted to assemble a longer history of the area’s volcanic and tsunami activity by surveying the older Hunga islands and surrounding shallow waters.

On the new island, we discovered that coarse deposits from falling water-rich jets of pyroclastic rock fragments form the lower beds of the cone, consistent with videos and photos of the eruption in progress.
Where waves have cut into the shoreline, the pyroclastic deposits appear poorly consolidated and poorly sorted.

The upper part of the cone is steeper and reflects a gradual “drying” (decrease in water interaction with magma) of the eruption as it proceeded.
This upper region is made up of thin, fine-grained beds of ash deposits, interspersed with ash-dominated sediments typical of lateral currents of particles, air, and steam.

The cone reached its maximum diameter by 7 January 2015 but continued to increase in height over the next 2 weeks.
Once the vent was completely surrounded by pyroclastic deposits, much higher eruption columns began.
Such Surtseyan eruptions—from a shallow sea or lake water—have only rarely been witnessed since the phenomenon was first seen during the formation of Surtsey, Iceland, in 1963 [Kokelaar, 1983].

A new crater lake sits atop the Hunga cone, created in the recent eruption between the islands of Hunga Ha‘apai and Hunga Tonga in the Tonga volcanic arc.
Credit: Marco Brenna 

Rilling of the island’s surface—forming dendritic erosion patterns—started during the cone growth, but it accelerated with rainfall once the eruption ceased. In addition, wave erosion began to rapidly attack the base of the island.
Wave erosion was strongest on the southern side of the cone, exposed to the southeast trade winds and associated ocean swells.
There, the island has shrunk by more than 500 meters from its initial posteruption shore, leaving 40-meter-high collapsing cliffs.


Strong rilling and gullying of the fresh volcanic material making up the new island that abuts Hunga Ha‘apai underscore the rapid rate of erosion in the area.
Coastal erosion has cut into the initial posteruption shore by more than 500 meters, leaving 40-meter-high collapsing cliffs on the island’s south side.
Author Shane Cronin stands near a large gully.
Credit: Marco Brenna

In the 2.5 years since its formation, the primary volcanic cone lost about 40% of its original footprint, which spanned roughly 8 square kilometers.
However, the island has remained roughly the same in overall area because erosion has been matched by long-coast redisposition of the volcanic material in beach bars, altering the island’s shape.
Taking Samples

Shortly after the eruption, we carried out a photogrammetric survey using a drone and real-time kinematic GPS control points to provide a baseline for future monitoring.

We collected samples to chemically characterize the new volcanic material and compare it with deposits of the broader volcano.
On the older Hunga Ha‘apai islands, we found welded pumice-rich ignimbrite units and nonwelded pyroclastic flow deposits, laid down by superheated flows of gas and particles.
Such deposits attest to past huge explosive eruptions from this long-lived volcano.

One pyroclastic flow deposit contained charcoal, which we dated to the period 1040–1180 CE.
This deposit correlates closely in age and chemistry to ashfall deposits found on Tongatapu Island, 65 kilometers to the southwest [Cronin, 2015].
It also corresponds, within uncertainty bounds, to an unknown tropical eruption in 1108 CE that produced more than 1°C of global cooling [Sigl et al., 2015].

Seafloor Mapping
We also mapped the seafloor surrounding the new island at a resolution of about 1 meter using a WASSP® multibeam sounder.


Fig. 2. A bathymetric sonar survey of the seafloor near the islands of Hunga Tonga and Hunga Ha‘apai, conducted in November 2015, shows the summit platform of the submerged Hunga volcanic edifice.
The dashed black line outlines a previously undocumented caldera, which lies 150 to 180 meters below the surface.
Traces of past eruptions along the caldera rim are clearly visible; the inset gives the locations of the 1988 eruptions in greater detail.
Areas colored white represent depths greater than 200 meters, beyond the range of the sonar system.
Credit: Simon Barker

The seafloor survey revealed a large closed depression to the south (Figure 2), consistent with the caldera postulated by Bryan et al. [1972].
The depression is approximately 150 meters deep and measures about 4 × 2 kilometers, with its northern and southern portions filled by younger volcanic deposits.

A broad, shallow area is associated with the 2009 eruptions south of the island formed in 2015 and a chain of cones formed in 1988 to the southeast.
Numerous other cones surround the rim of the caldera.

The caldera likely formed when an older Hunga edifice collapsed violently into the sea.
This collapse may be the source of the unknown South Pacific eruption about 1000 years ago.

Next Steps

Our first observations highlight how rapidly new volcanic forms are eroded in this area and imply that the volcanic record in the Tonga region is extremely fragmentary.
In future visits, we will continue investigating past eruptions while extending submarine surveys and sampling around the new island to monitor the ongoing changes in response to storms and other events.

Links :

Sunday, July 2, 2017

Hokule'a Hawaiian canoe completes three-year voyage around the world


From BBC

A traditional Polynesian voyaging canoe has returned to Honolulu in Hawaii, completing the first-ever round-the-world trip by such a vessel.
The boat, the Hokule'a, took three years to journey around the globe. 

Hawaiian Hokule'a canoe makes it round the world
The Hokulea’s mission: To inspire people to take care of “island Earth.”

Its crew navigated without modern instruments, using only the stars, wind and ocean swells as guides.
They aimed to use the same techniques that brought the first Polynesian settlers to Hawaii hundreds of years ago.
Hawaii celebrated the Hokule'a's homecoming on Honolulu's Magic Island peninsula.
Built in the 1970s, it has travelled around 40,000 nautical miles (74,000km) on this latest trip, known as the Malama Honua voyage, meaning "to care for our Island Earth".

Its aim has been to spread a message about ocean conservation, sustainability and protecting indigenous culture.
"Hokule'a has sparked a reawakening of Hawaiian culture, language, identity and revitalized voyaging and navigation traditions throughout the Pacific Ocean," said the voyage organisers on their website.

Navigator Kala Baybayan Tanaka and Capt. Timi Gilliom consult a nautical chart of Ka‘ie‘iewaho Channel on a sail from Oahu to Kauai to commemorate the launching of Namahoe, Kauai’s first voyaging canoe, in September.
Kaipo Ki‘Aha photo

Naalehu Anthony, crewmember and chief executive director of Hawaiian media company Oiwi TV which documented the trip, told Hawaii Public Radio that wherever they docked, people greeted them with a Hawaiian "Aloha" greeting.
"One of the things I really admire about the voyage, looking back on it, is that we always asked the first nations peoples from these different places for permission to come. We never said we are coming. We said, would it be OK for us to come and honour the native people of this place," he said.
The voyage, he added, had been an "opportunity to celebrate native knowledge and look at ways that we are more common than we are different".
Links :