Monday, April 3, 2017

Salmon farming in crisis: 'We are seeing a chemical arms race in the seas'

This information is from a documentary called "Poisonous Fish: The Big Health Lie" that aired in November 2014, produced by Austrian national TV (ORF)

From The Guardian by John Vidal

Rare only 40 years ago, farmed salmon is now taken for granted in our kitchens.
But the growth of the industry has come at great cost


Every day, salmon farmers across the world walk into steel cages – in the seas off Scotland or Norway or Iceland – and throw in food.
Lots of food; they must feed tens of thousands of fish before the day is over.
They must also check if there are problems, and there is one particular problem they are coming across more and more often.
Six months ago, I met one of these salmon farmers, on the Isle of Skye.
He looked at me and held out a palm – in it was a small, ugly-looking creature, all articulated shell and tentacles: a sea louse.
He could crush it between his fingers, but said he was impressed that this parasite, which lives by attaching itself to a fish and eating its blood and skin, was threatening not just his own job, but could potentially wipe out a global multibillion-dollar industry that feeds millions of people.
“For a wee creature, it is impressive.
But what can we do?” he asks.
“Sometimes it seems nature is against us and we are fighting a losing battle.
They are everywhere now, and just a few can kill a fish.
When I started in fish farming 30 years ago, there were barely any.
Now they are causing great problems.”

Lepeophtheirus salmonis, or the common salmon louse, now infests nearly half of Scotland’s salmon farms.
Last year lice killed thousands of tonnes of farmed fish, caused skin lesions and secondary infections in millions more, and cost the Scottish industry alone around £300m in trying to control them.

 A salmon farm in Scotland run by Marine Harvest,
one of the largest seafood companies in the world.
Photograph: Graeme Robertson for the Guardian

Scotland has some of the worst lice infestations in the world, and last year saw production fall for the first time in years.
But in the past few weeks it has become clear that the lice problem is growing worldwide and is far more resistant than the industry thought.
Norway produced 60,000 tonnes less than expected last year because of lice, and Canada and a dozen other countries were all hit badly.
Together, it is estimated that companies across the world must spend more than £1bn a year on trying to eradicate lice, and the viruses and diseases they bring.

As a result of the lice infestations, the global price of salmon has soared, and world production fallen.
Earlier this year freedom of information [FoI] requests of the Scottish government showed that 45 lochs had been badly polluted by the antibiotics and pesticides used to control lice – and that more and more toxic chemicals were being used.

The salmon-farming industry, which has grown at breakneck speed since the 1970s, knows it has a huge problem, but insists it sees the lice as unwelcome guests that will soon be evicted rather than permanent residents.
Rather than dwell on the lice, industry leaders point to the fact that in just 40 years, aquaculture has gone from providing 5% of the world’s fish to nearly 50%, and in Scotland, from a few hundred tonnes of salmon a year to more than 177,000 tonnes in 2015.
They argue that new methods to control infestations are being developed and the chemicals being used are safe and degrade quickly, adding that they expect to have found a solution within a few years.

“Sea lice are a natural phenomenon,” says Scott Landsburgh, chief executive of the Scottish salmon producers association.
“All livestock on farms, terrestrial or marine, are encountering some kind of parasite or tick, and they’re dealt with. And that’s part of livestock farming. We are no different to terrestrial farms. Problems come and go, depending on biology and the environment. The louse is a hardy parasite. It’s a challenge for Chile and Norway, too. We are spending a lot on all sorts of things.”

The global companies that dominate ownership of the farms, buoyed by high prices and growing worldwide demand, are confident that they will find solutions.
Marine Harvest, the giant Norwegian multinational that grows 40,000 tonnes of salmon in its many Scottish farms, said this week that it needs to develop more effective ways to combat lice.
“As a relatively young industry, we hope that through industry collaboration, research, transparency and sharing of knowledge, we can make the necessary changes to do better, and keep getting better,” says Alf-Helge Aarskog, CEO.
“One company alone cannot solve all sustainability challenges.”


Meanwhile, they urge the public to celebrate the fact that the Atlantic salmon, which used to complete an extraordinary journey across oceans to breed in British rivers, is now taken for granted in our kitchens and, in an act of ecological democratisation, has been transformed from something special enjoyed by the few into the most popular fish eaten in Britain.

If the nemesis of the farmed Atlantic salmon is the sea louse, then Don Staniford, who runs the small Global Alliance Against Industrial Aquaculture, is the industry’s persecutor-in-chief.
The former University of East Anglia scientist turned activist and investigator has spent 20 years tracking the industry, seeing it grow from a shrimp into a shark, which, he says, is now close to destroying itself.

I last heard Staniford talk in London in 2012, when he gave a lecture at the National Geographic Society, calling fish farms “toxic toilets” and warning that diseases were rife, waste was out of control and the use of chemicals was growing fast.
Not only were fish farms getting bigger, he said, they were also becoming reservoirs for infectious diseases and parasites.
It was a shocking, revealing talk.
I did not know that farmed salmon were fed partly on fishmeal and fish oil, often derived from ocean fish such as anchovies, herring and sardines.
Despite industry claims that industrial aquaculture feeds the world’s poor, it seemed that the big farms were adding to the pressure on the depletion of the oceans.

Photo : Adrian Warren, Dae Sasitorn

Staniford, a Liverpudlian who has lived in Scotland for many years, argued that cramming carnivorous, migratory fish into crowded tanks and releasing toxins, diseases and parasites into the surrounding waters was inherently unsustainable.
Unless the global salmon farming industry drastically changed course, he said, it would collapse.

This week I asked Staniford what had changed since then.
Little, he replied, except that the farms had got bigger, the industry was spending even more heavily to control the lice, more fish were dying in appalling conditions and the pollution caused by their waste and the use of chemicals was becoming more serious.
He has spent the past five years labelled an “eco-terrorist”, a “troublemaker”, an “exaggerator” and “a prophet of doom”.
He has been sued by the industry for defamation, lost a high-profile Canadian high court battle, been heavily fined, been threatened many times, and been ordered never to repeat statements such as “wild salmon don’t do drugs” and “salmon farming spreads diseases”.

“He is an ace troublemaker. He annoys everyone … but he uses freedom of information requests to get his data and 99 times out of 100 he is right”, says Scottish investigative journalist Rob Edwards.
“I am a trained scientist. I use peer-reviewed science and use the industry’s own figures,” says Staniford.
“What we are seeing now is a chemical arms race in the seas, just like on the land farms, where the resistance of plants to chemicals is growing.
In fish farms, the parasites are increasing resistance to chemicals and antibiotics.
There has been a 10-fold increase in the use of some chemicals in the past 18 months.” The farms are now turning to mechanical ways to delouse the fish, he says.
“They are using hydro-dousers, like huge carwashes, and thermal lousing, which heats them up.”

There is also the spectre of GM salmon, with companies engineering GM plants for their omega-3 to feed the fish, and a US company given permission to develop GM salmon.
“Whichever way you look, the breeding of carnivorous fish is a nightmare.
It is environmentally, socially and economically bankrupt.
It’s coming to a crisis point for the industry.
Some chemicals will be banned soon, and unless something significant happens, the industry will have to invest very heavily.”

 Soaring numbers of sea lice have leached away the output of farmed salmon in Scotland and Norway over the past year and helped global salmon prices to surge.

The use of chemicals, especially, worries him.
Last month Staniford unearthed the fact that not only was the use of the toxic drug emamectin rising fast, but also that the industry had persuaded the Scottish environmental protection agency to withdraw a ban planned for next year.
Other papers showed that the levels of chemicals used to kill sea lice have breached environmental safety limits more than 100 times in the last 10 years.
The chemicals have been discharged into the waters by 70 fish farms run by seven companies.

Support is growing for an investigation into the links between the industry and government.
Richard Luxmoore, senior nature conservation adviser to the National Trust for Scotland, told the Daily Record in February: “The environmental standards have been put there for a good reason.
It is highly worrying that they have been breached so many times.
This is yet more evidence that the chemical warfare waged by fish farms against sea lice has essentially been lost, and the application of toxins to kill them is spiralling out of control.”

Meanwhile, FoI documents obtained by Staniford show that the Scottish industry wants to “innovate” by building the world’s biggest salmon farm, which would triple the size of the largest now in operation.
It could farm 2m fish at a time, and create as much waste as a city the size of Glasgow.
“It would be an ecological disaster,” says Staniford.

The answer to the inevitable lice problems, say environmentalists, is to move the farms further offshore into deeper, colder waters, where lice are less able to survive, or to even put them on land, where they could be better controlled.
But this would add greatly to industry costs and require investments of billions of pounds.
In the meantime, the companies are using mechanical ways to trim the lice from the fish.
These range from pumping the fish through water hot enough to make the lice let go of their hosts, to churning them as if in a washing machine.
Both are condemned by animal welfare group Compassion in World Farming, and are known to be expensive and not always effective.
Last year the heating of the water on a Skye fish farm led to the accidental slaughter of 95,000 fish.
Another 20,000 died in another incident.
“Many farmed fish are fed largely on wild fish.
To produce farmed fish such as salmon, it takes about three times the weight of wild-caught fish.
This is not only unsustainable, but adds to the serious welfare concerns about how wild fish are caught and slaughtered,” said a spokesman.

The smart money is now on breeding wrasse, a small fish that eats lice.
It is being widely piloted and is highly promising, says Landsburgh.
“We have about 100,000 fish and the wrasse have cut our losses enormously.
We haven’t had to use chemicals since August 2014.
Most fish farms are overcrowded, but we are not.
We find lice very occasionally but 99% of the time we are completely clean,” said Pete Robinson, a worker at the Wester Ross salmon company in Ullapool.
But even using wrasse is not a complete answer.
New scientific studies showed this week that fish farms may be depleting wild wrasse numbers too, and to breed enough for all Scottish farms could take four or more years, says Landsburgh.
“But we have to keep at it. The louse is a hardy parasite. We are doing our damnedest to eradicate it,” he said.
“There’s no right way to do the wrong thing,” says Staniford.
“The simple solution is to just stop.”

Salmon: the facts
  • Salmon is the biggest-selling seafood in the UK.
    Most UK production is carried out by six Norwegian companies.
    There are about 250 salmon farms off the west coast of Scotland and its islands
  • 60% of Scottish farmed salmon is sold to British consumers.
    Export markets are led by the US, which bought 30,000 tonnes in 2015.
    UK sales are more than £700m a year
  • Farmed salmon are fed on oil and smaller fish, ground-up feathers, GM yeast, soybeans and chicken fat
  • Wild salmon get their colour from eating krill and shrimp.
    The flesh of farmed salmon is grey, and is coloured by astaxanthin, a manufactured copy of the pigment that wild salmon eat in nature
  • Fish is an important part of a healthy diet, and salmon are a good source of omega-3 fatty acids that can reduce the risk of cardiovascular diseases
  • Farmed salmon is still good for the health.
    Buy from the smaller, sea-based farms that are not under pressure to overstock.
    There are a few good organic ones that claim to have addressed all the problems.
    People have to judge carefully the environmental and health issues.
    The good news is that both farmed and wild salmon have very low levels of mercury, PCBs and other contaminants.
Links :


Sunday, April 2, 2017

Sea Traffic Management - services and their benefits

Showing Sea Traffic Management services ships can use in the (near) future, and the benefits.
www.stmvalidation.eu
 
The STM project is a follow on from the E.U.-funded MONALISA 2.0 project. MONALISA 2.0 developed a system that will enable vessel route information to be shared between ships and centers on shore.

Using this data, other service providers will be able to offer advice to vessels, such as recommendations to avoid congestion in areas with high traffic, avoidance of environmentally sensitive areas, and maritime safety information.
The information exchange between vessel and ports is anticipated to improve planning and performance regarding arrivals, departures and turnaround times.

STM is developing the information technology platforms needed for this boost to voyage planning and traffic flow.
Test beds in Northern Europe and Mediterranean Sea will engage 300 vessels, 10 ports of different sizes and three shore centers.
These will validate the STM concept and pave the way for smooth deployment of new collaborative services.

The first MONALISA project, implemented in 2010-2013, showed that providing vessels with the ability to see each other’s planned routes gives navigators a more complete picture of how surrounding vessels will influence their onward voyage. 

From this picture, shore services are able to retrieve valuable information and offer advice to vessels on their routes, such as recommendations to avoid congestion in areas with high traffic, avoidance of environmentally sensitive areas and maritime safety information.
The STM Validation Project encompasses 39 partners (private, public and academic) from 13 countries and with a total budget of 43 million Euros ($45 million).
The project will run from 2015 to 2018.
 

M/S Validator is sailing from New York to UmeƄ, Sweden.
During her voyage she benefits from several STM services and interacts with a shore centre and the port.
The concrete use of services is demonstrated.

PortCDM Readied

The ports involved in STM have also made progress in defining information to exchange and share, developing connectors to allow automatic information exchange and setting up technical infrastructure.
The project will involve testing a new technology PortCDM to enhance coordination and facilitate just-in-time arrivals, increase predictability, berth productivity, punctuality, reduce waiting and anchoring times and boost resource utilization.
The major added value with PortCDM is the exchange of time stamp information between the ports and the ships.
This will facilitate just-in-time arrivals and contribute to eliminating idle times for resources connected to port call operations.
An example is when a pilot has to wait onboard a ship for the terminal to complete cargo operations because of a lack of accurate information.
By having accurate data on the departure, the pilot can arrive just-in-time for the assignment and thereby achieve enhanced resource utilization.

Saturday, April 1, 2017

Strange deep sea creatures

The term deep sea creature refers to organisms that live below the photic zone of the ocean.
These creatures must survive in extremely harsh conditions, such as hundreds of bars of pressure, small amounts of oxygen, very little food, no sunlight, and constant, extreme cold.
Most creatures have to depend on food floating down from above.
These creatures live in very harsh environments, such as the abyssal or hadal zones, which, being thousands of meters below the surface, are almost completely devoid of light.
The water is between 3 and 10 degrees Celsius and has low oxygen levels.
Due to the depth, the pressure is between 20 and 1,000 bars.
Creatures that live hundreds or even thousands of meters deep in the ocean have adapted to the high pressure, lack of light, and other factors.

Friday, March 31, 2017

Reminder : The United States purchased Alaska from the Russian Empire 150 years ago

North western America showing the territory ceded by Russia to the United States
The map the Coast Survey prepared in 1867 still referred to Alaska as “Northwestern America.” 
The Russian settlements are underlined in red.
The Esquimaux settlements are underlined in blue.
With two inset maps: Sitka and its approaches from the Russian and British authorities; and an untitled map showing the North Pacific Ocean including the great circle line from Hakodadi, Japan to San Francisco, California. 
(NOAA/National Archives) Author: United States Coast Survey (1867)
Location: Alaska, Sitka (Alaska)

On this day in 1867, the United States formally took possession of Alaska after purchasing the territory from Russia $7.2 million, or less than two cents per acre.
This purchase increased the nation's size by 586,412 square miles (about two Texas's).

 North America in 1826

The treaty with Russia was brokered by William Seward, the ardently expansionist Secretary of State under President Andrew Johnson.
Many critics believed the land to be barren and worthless, and dubbed the purchase “Seward’s Folly,” "Seward’s Icebox," and “Andrew Johnson’s Polar Bear Garden,” among other ice-cold names.
These critics cooled off following the Klondike Gold Strike in 1896.


Thursday, March 30, 2017

Solving the mystery of the Arctic's green ice

Melt ponds darken the surface of thinning Arctic sea ice, creating conditions friendly to algae blooms under the ice.
(Image courtesy of NASA)

From Harvard by Leah Burrows

In 2011, researchers observed something that should be impossible — a massive bloom of phytoplankton growing under Arctic sea ice in conditions that should have been far too dark for anything requiring photosynthesis to survive.
So, how was this bloom possible?

Using mathematical modeling, researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) found that thinning Arctic sea ice may be responsible for frequent and extensive phytoplankton blooms, potentially causing significant disruption in the Arctic food chain.
The research is described in Science Advances and is a collaboration between researchers from SEAS, University of Oxford and University of Reading.

Arctic Melt Pond
NASA (August 2014)

Phytoplankton underpins the entire Arctic food web.
Every summer, when the sea ice retreats, sunlight hitting the open water triggers a massive bloom of plankton.
These plumes attract fish, which attract larger predators and provides food for indigenous communities living in the Arctic.
Phytoplankton shouldn’t be able to grow under the ice because ice reflects most sunlight light back into space, blocking it from reaching the water below.

Spatial map of the average number of days of sufficient light for sub-ice phytoplankton blooms over time.
(A to C ) Shading indicates the number of days in May,
from 1986 to 1995 (A), 1996 to 2005 (B), and 2006 to 2015 (C), where a sub-ice bloom is permitted. (D to F) Same as (A) to (C) but for June. 

(G to I) Same as (A) to (C) but for July. 
Redboxes in (D) to (F) indicate the region of the 2011 cruise.
Baffin Bay and regions with an ice concentration less than 80% at every point during each time period are colored blue.
Continents are colored gray.




The green shows the area of sea ice where plankton is able to grow (Christopher Horvat)

But over the past decades, Arctic ice has gotten darker and thinner due to warming temperatures, allowing more and more sunlight to penetrate to the water beneath.
Large, dark pools of water on the surface of the ice, known as melt ponds, have increased, lowering the reflectivity of the ice.
The ice that remains frozen is thin and getting thinner.
“Our big question was, how much sunlight gets transmitted through the sea ice, both as a function of thickness, which has been decreasing, and the melt pond percentage, which has been increasing,” said Chris Horvat, first author of the paper and graduate student in applied mathematics at SEAS.
“What we found was that we went from a state where there wasn’t any potential for plankton blooms to massive regions of the Arctic being susceptible to these types of growth.”

Scientists have made a biological discovery in Arctic Ocean waters as dramatic and unexpected as finding a rainforest in the middle of a desert.
A NASA-sponsored expedition punched through three-foot thick sea ice to find waters richer in microscopic marine plants, essential to all sea life, than any other ocean region on Earth.
The discovery is the result of an oceanographic expedition called ICESCAPE, or Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific Environment.
The NASA-sponsored mission explored the seas along Alaska's western and northern coasts onboard a U.S. Coast Guard icebreaker during the summers of 2010 and 2011.
The finding reveals a new consequence of the Arctic's warming climate and provides an important clue to understanding the impacts of a changing climate and environment on the Arctic Ocean and its ecology. 

The team’s mathematical modeling found that while the melt ponds contribute to conditions friendly to blooms, the biggest culprit is ice thickness.
Twenty years ago, only about 3 to 4 percent of Arctic sea ice was thin enough to allow large colonies of plankton to bloom underneath.
Today, the researchers found that nearly 30 percent of the ice-covered Arctic Ocean permits sub-ice blooms in summer months.
“The meter decline in sea ice thickness in the Arctic in the past 30 years has dramatically changed the ecology in that area,” said Horvat.
“All of a sudden, our entire idea about how this ecosystem works is different. The foundation of the Arctic food web is now growing at a different time and in places that are less accessible to animals that need oxygen.”

Links :