Friday, September 9, 2016

How climate change could jam the world's ocean circulation

Illustration depicting the circulation of the global ocean.
Throughout the Atlantic Ocean, the circulation carries warm waters (red arrows) northward near the surface and cold deep waters (blue arrows) southward.
(Image courtesy of NASA/JPL)

From Yale E360 by Nicola Jones

Scientists are closely monitoring a key current in the North Atlantic to see if rising sea temperatures and increased freshwater from melting ice are altering the “ocean conveyor belt” — a vast oceanic stream that plays a major role in the global climate system.

Melting ice flows into the northern Atlantic Ocean in eastern Greenland.
courtesy of Mariusz Kluzniak / Flickr

Susan Lozier is having a busy year.
From May to September, her oceanographic team is making five research cruises across the North Atlantic, hauling up dozens of moored instruments that track currents far beneath the surface.
The data they retrieve will be the first complete set documenting how North Atlantic waters are shifting — and should help solve the mystery of whether there is a long-term slowdown in ocean circulation.
“We have a lot of people very interested in the data,” says Lozier, a physical oceanographer at Duke University.

A similar string of moorings across the middle of the Atlantic, delving as deep as 3.7 miles from the Canary Islands to the Bahamas, has already detected a disturbing drop in this ocean’s massive circulation pattern.
Since those moorings were installed in 2004, they have seen the Atlantic current wobble and weaken by as much as 30 percent, turning down the dial on a dramatic heat pump that transports warmth toward northern Europe.
Turn that dial down too much and Europe will go into a deep chill.

Researchers have been worried about an Atlantic slowdown for years.
The Atlantic serves as the engine for the planet’s conveyor belt of ocean currents: The massive amount of cooler water that sinks in the North Atlantic stirs up that entire ocean and drives currents in the Southern and Pacific oceans, too.
“It is the key component” in global circulation, says Ellen Martin, a paleoclimate and ocean current researcher at the University of Florida.
So when the Atlantic turns sluggish, it has worldwide impacts: The entire Northern Hemisphere cools, Indian and Asian monsoon areas dry up, North Atlantic storms get amplified, and less ocean mixing results in less plankton and other life in the sea.

Paleoclimatologists have spotted times in the deep past when the current slowed quickly and dramatically, cooling Europe by 5 to 10 degrees C (10 to 20 degrees F) and causing far-reaching impacts on climate.

Modelers have tried to predict how human-caused climate change might impact the Atlantic current, and how its slowdown might muck with the world’s weather even more.
But years of intensive peering at this question haven’t yet provided much clarity.

Now, debate is raging about whether the recent Atlantic slowdown has been triggered by climate change, or is just part of a normal cycle of fast and slow currents.
New studies in the last few years and months have come out supporting both prospects.
The new data from the north, Lozier and others hope, might help to sort things out.

 Ocean currents (1943)

When the Hollywood blockbuster “The Day After Tomorrow” threw the Atlantic Ocean current into the popular spotlight in 2004, researchers laughed at its portrayal of an ocean current shutdown.
In the movie, the world was plunged into a new ice age in a matter of days, with cold fronts literally chasing people at a sprint.
But the disaster at the core of the film was based in some reality.

A huge amount of heat is moved around our planet by a single ocean current system — the Atlantic Meridional Overturning Circulation (AMOC) — which accounts for up to a quarter of the planet’s heat flux.
The system is driven by density: waters that are cold or salty are denser and so dive down to the ocean floor.
As a result, today, cold waters sink in the North Atlantic and flow southwards, while warm tropical waters at the surface flow northwards in the Gulf Stream, making northern Europe unusually mild for its latitude.
But if northern waters get too warm, or too fresh from melting ice, then they can stop being dense enough to sink.
That causes a major traffic jam for the water attempting to move north, and the system grinds to a halt.

This has happened before.
Researchers have spotted dramatic AMOC slowdowns of more than 50 percent during the last glaciation some 100,000 to 10,000 years ago, over a period perhaps as short as decades.
The theory —which is being debated — is that as ice sheets got too big to stay stable, armadas of icebergs broke off, floated out to sea, and melted; even though the waters were chilly, the huge influx of freshwater made them less dense, and so they stopped up the currents.
Looking further back in time to the last interglacial period about 120,000 years ago, which is more like today’s interglacial world, is trickier.
But a study of some proxy measurements has shown that there may have been rapid slowdowns in the last interglacial, too.

“It seems to be a fairly stable system, until we push it just the right amount and then we’re in terrible shape,” says Martin.
“I don’t think you want to play with the AMOC.”

The last review by the Intergovernmental Panel on Climate Change concluded that the AMOC is very likely to slow by the end of the century, perhaps by as much as 54 percent in the worst-case scenario, where emissions keep going up and global temperatures rise about 4 degrees C.
But the range of possible slowdowns in these predictions is huge, starting at just 1 percent for an emissions-restricted world.

If the North Atlantic current slows dramatically, then the entire Northern Hemisphere would cool; a complete collapse of the current could even reverse global warming for about 20 years.
But the heat that ocean currents fail to transport northwards would make parts of the Southern Hemisphere even hotter.
And a cooler north isn’t necessarily good news.

Should the AMOC shut down, models show that changes in rainfall patterns would dry up Europe’s rivers, and North America’s entire Eastern Seaboard could see an additional 30 inches of sea level rise as the backed-up currents pile water up on East Coast shores.

But to pin down what the AMOC is going to do, researchers need to better understand what it’s doing right now.
And that is proving tricky.

The problem researchers face is that the AMOC is extremely capricious, wobbling around more from year to year than the expected shift to date from global warming.
Just like temperature or sea level records, this makes for a very noisy signal in which it’s hard to see long-term trends.
“It’s analogous to the early difficulty seeing a global warming signature,” says Columbia University paleoclimatologist and oceanographer Jerry McManus.
“Now that signature is compelling, but it took a while to see it clearly. Now that’s happening with AMOC.”

The first string of moorings put in the ocean to investigate this current — the so-called RAPID array, with more than a dozen moorings from Florida to the Canary Islands — were deployed in 2004.
They have shown a drop in water flow from 20 sverdrups (or million cubic meters of water per second) to 15 sverdrups over a decade.
But the variability is huge.
In 2009 to 2010, for example, the current was particularly sluggish for some reason, with water transport dropping by about a third.
That helped to make the next winter the coldest for the United Kingdom since 1890, with heavy snowfalls and travel chaos.
And from New York to Newfoundland, sea levels were boosted by five inches. Lozier’s data from the northern part of the ocean — in an array called OSNAP — will add a missing piece to the puzzle of what the current is up to.

 A pocket of cold water has formed in the northern Atlantic Ocean from melting Arctic and Greenland ice.
Scientists say it has the potential to disrupt ocean circulation.

Actual measurements of the AMOC across the ocean only date back to 2004; to get a longer-term picture, researchers have to rely on other measurements to infer ocean current.
Last year, Stefan Rahmstorf, of the Potsdam Institute for Climate Impact Research in Germany, grabbed media headlines with a paper looking at sea surface temperature as a proxy for current.
That study argued that the Atlantic current has slowed more since 1975 than at any point in the last thousand years, creating an obvious chilly blob over the North Atlantic — one of the only spots on the planet that’s actually cooling.
The slowdown started in about the 1930s, Rahmstorf says, strongly suggesting that mankind is to blame.

Others aren’t yet convinced.
“The jury is still out,” says Lozier, who notes that sea surface temperature is a messy proxy for current.
“Weakening is a possibility, but it hasn’t been proven yet,” agrees Laura Jackson of the UK’s Met Office, who studies the AMOC.

Jackson’s own work in a special collection of papers about ocean circulation in Nature Geoscience this July showed that the AMOC has a decadal oscillation that naturally makes it swing from high to low flow.
The mechanisms behind that aren’t well understood, but the upshot is that the slowdown seen since 2004 could just be due to one of these oscillations.
It’s also possible that both things are true: There could be a decadal-scale oscillation sitting on top of a longer-term slowdown caused by climate change.

Another paper published in that same issue of Nature Geoscience, however, suggests that the amount of meltwater from Greenland isn’t yet enough to muck with the AMOC, despite the fact that Greenland is shedding nearly 300 billion tons of water a year.
“It sounds like a lot of water, but it’s going over a big area,” says Jackson.
Most of the freshwater pouring into the Labrador Sea seems to be swirled off down the Canadian coast by smaller ocean currents or eddies, instead of building up and stopping the AMOC.  

If the AMOC has really been slowing since about 1930 thanks to humanity’s influence on the climate, the exact way that is happening remains unclear.
It could simply be the warming of Atlantic waters in critical areas, or the introduction of extra freshwater from increased rain.
“We need another decade of observations, at least,” says Jackson, who also keenly awaits the OSNAP data sometime next spring.
“Knowing what’s happening at high latitudes well help us determine which model is right,” she says.
Meanwhile a third line of moorings in the South Atlantic, from Brazil to South Africa, should start to highlight what’s happening at the other end of the ocean.

For now, everyone awaits more data to see whether the AMOC is slowing down and, if so, what that will mean for the planet.
“It’s complicated because there are feedbacks, and we don’t understand them all.
Some could be positive; some could be negative,” says Jackson.
But, Jackson adds, “The general feeling is, ‘Don’t panic.’”

Links :

Thursday, September 8, 2016

World’s first app to be approved by the UK Hydrographic Office for the provision of official ADMIRALTY corrections

For further information, please visit the dedicated website here,
register for an account and try the service for free for 30 days.


Launched 1 September 2016, our new app is the worlds first providing the approved ADMIRALTY paper chart corrections, including tracings, notice and correction blocks, via an electronic tablet.




Developed by mariners for mariners, we reviewed the many other chart correction software on the market and determined most are swamped with features which the average mariner simply doesn't want or need.
Their overcomplicated menu structures and inability to easily find the relevant information mean the person designated maintenance of the chart ouftit can waste much time when all they want to do is download the corrections for the forthcoming passage, apply them and execute the passage plan.
Our app has been designed specificially to make it as easy and intuative as possible for the mariner so they spend more time looking out of the winder when on watch or able to catch up with sleep when off.

The app was deliberately created due to the lack of software compatible for the Mac operating system and therefore this will run on any iOS or Android tablet and should you lose or damage that equipment, simply download the app to another, log in with your main user account and carry on from the last sync which was conducted without having to re-load your outfit manually again.

With a simple user interface, the app will allow the user to among other things:
Build their outfit from the standard UKHO catalogue of folios and store them in the same folio structure or a completely customable format specific to that vessel.
As another industry first, log in duplicate charts, useful when two or more of the same are held on board or perfect for training schools and academies with multiple copies of the same.
Having entered your outfit, quickly set the latest Notice to Mariner and apply it to one, all or as many of the charts as necessary.
Determine which corrections to download to save time and communication costs.
Generate additional users on board to maintain full accountability of the chart correction trail.
View or print audit compliant reports detailing the full status of the outfit, corrections, T's & P's and other relevant information.

Ideal for management companies too

As an additional advantage, we've developed the app with the added convenience which allows management companies to log in remotedly via the website to the outfit of each of their vessels to determine its status.
This useful feature not only allows the superintendent to keep an eye on the chart status but also prepare for any forthcoming audit.

Furthermore, if charts are kept in storage at the management company where a correcting service is in place, the corrector can similarly log into the vessel outfit and 'apply' the corrections as the charts are returned on board which again saves time for the bridge team.


Coast Survey testimony on NOAA charting program is on House

Federal Maritime Navigation Programs: Interagency Cooperation and Technological Change


This is a joint hearing of the Subcommittee on Coast Guard and Maritime Transportation and the Subcommittee on Water Resources and Environment


Witnesses:
  • Rear Admiral Paul F. Thomas, Assistant Commandant for Prevention Policy, United States Coast Guard | Written Testimony
  • Rear Admiral Shephard Smith, Director, Office of Coast Survey, National Oceanic and Atmospheric Administration | Written Testimony
  • Mr. Edward E. Belk, Jr. P.E., Chief, Operations and Regulatory Division, United States Army Corps of Engineers | Written Testimony
The Subcommittees on Coast Guard and Maritime Transportation and Water Resources and Environment hold a joint hearing yesterday, in 2167 Rayburn House Office Building to examine federal maritime navigation programs.
The Subcommittees will hear from the United States Coast Guard, the United States Army Corps of Engineers (Corps), and the National Oceanic and Atmospheric Administration (NOAA).

A safe, secure, and efficient marine transportation system is critical to the U.S. economy.
Waterborne cargo and associated commercial activities sustain 13 million jobs and contribute more than $649 billion to the U.S. gross domestic product annually.
A major challenge facing the Nation is to improve the economic efficiency and competitiveness of the U.S. maritime sector, while reducing risks to life, property, and the coastal environment.

Rapid innovation in satellite and advanced telecommunication-based navigation technologies presents new opportunities to improve the safety, security, and efficiency of the marine transportation system and reduce risks to the coastal and maritime environments.
Operational integration electronic navigation (e-navigation) technologies also pose challenges for federal and other governmental agencies, and for private commercial vessel operators and recreational boaters.
The Committee explored these issues and hear from the leaders charged with adapting these new and emerging technologies to current maritime navigation programs.

Soaring ocean temperature is 'greatest hidden challenge of our generation'

 In order to measure and understand the planet's oceans, NOAA is constantly monitoring daily measurements of dozens of ocean variables, providing assessments of ocean health, and modeling the future of ocean dynamics.
This animation shows four years of sea surface temperature (SST) data from a NOAA Geophysical Fluid Dynamics Laboratory's Earth-system model.
You can see several amazing features in this visualization, from the cycling of El Niño to La Niña, streaks of cooler water created by tropical cyclones, seasonal shifts in temperature, and even ocean currents and eddies--reinforcing the idea that there may be several ocean basins, but only one connected ocean.
Not only does the NOAA Satellite and Information Service house and distribute data such as these Earth-system models, but it also provides carefully analyzed, long-term climate data records based on satellite derived information that help validate the accuracy of such models.

From The Guardian by Oliver Milman

IUCN report warns that ‘truly staggering’ rate of warming is changing the behaviour of marine species, reducing fishing zones and spreading disease

The soaring temperature of the oceans is the “greatest hidden challenge of our generation” that is altering the make-up of marine species, shrinking fishing areas and starting to spread disease to humans, according to the most comprehensive analysis yet of ocean warming.
The oceans have already sucked up an enormous amount of heat due to escalating greenhouse gas emissions, affecting marine species from microbes to whales, according to an International Union for Conservation of Nature (IUCN) report involving the work of 80 scientists from a dozen countries.

 A series of animations produced by the Ocean and Sea Ice SAF showing sea surface temperature (SST) as seen from Europe’s Metop and Meteosat satellites and Suomi-NPP.

The profound changes underway in the oceans are starting to impact people, the report states.
“Due to a domino effect, key human sectors are at threat, especially fisheries, aquaculture, coastal risk management, health and coastal tourism.”
Dan Laffoley, IUCN marine adviser and one of the report’s lead authors, said: “What we are seeing now is running well ahead of what we can cope with.
The overall outlook is pretty gloomy.
“We perhaps haven’t realised the gross effect we are having on the oceans, we don’t appreciate what they do for us.
We are locking ourselves into a future where a lot of the poorer people in the world will miss out.”
The scale of warming in the ocean, which covers around 70% of the planet, is “truly staggering”, the report states.
The upper few metres of ocean have warmed by around 0.13C a decade since the start of the 20th century, with a 1-4C increase in global ocean warming by the end of this century.

Global sea surface temperatures are currently at their highest level since records began 

  Annual global sea surface temperature anomalies in degrees celsius 
Guardian graphic | Source: National Climate Data Center - National Oceanic and Atmospheric Administration.
Base period 1951-1980

The ocean has absorbed more than 90% of the extra heat created by human activity.
If the same amount of heat that has been buried in the upper 2km of the ocean had gone into the atmosphere, the surface of the Earth would have warmed by a devastating 36C, rather than 1C, over the past century.
At some point, the report says, warming waters could unlock billions of tonnes of frozen methane, a powerful greenhouse gas, from the seabed and cook the surface of the planet.
This could occur even if emissions are drastically cut, due to the lag time between emitting greenhouse gases and their visible consequences.
Warming is already causing fish, seabirds, sea turtles, jellyfish and other species to change their behaviour and habitat, it says.
Species are fleeing to the cooler poles, away from the equator, at a rate that is up to five times faster than the shifts seen by species on land.


Even in the north Atlantic, fish will move northwards by nearly 30km per decade until 2050 in search of suitable temperatures, with shifts already documented for pilchard, anchovy, mackerel and herring.
The warming is having its greatest impact upon the building blocks of life in the seas, such as phytoplankton, zooplankton and krill.
Changes in abundance and reproduction are, in turn, feeding their way up the food chain, with some fish pushed out of their preferred range and others diminished by invasive arrivals.

With more than 550 types of marine fishes and invertebrates already considered threatened, ocean warming will exacerbate the declines of some species, the report also found.
The movement of fish will create winners and losers among the 4.3 billion people in the world who rely heavily upon fish for sustenance.
In south-east Asia, harvests from fisheries could drop by nearly a third by 2050 if emissions are not severely curtailed.
Global production from capture fisheries has already levelled off at 90m tonnes a year, mainly due to overfishing, at a time when millions more tonnes will need to be caught to feed a human population expected to grow to 9 billion by 2050.
Humans are also set to suffer from the spread of disease as the ocean continues to heat up.
The IUCN report found there is growing evidence of vibrio bacterial disease, which can cause cholera, and harmful algal bloom species that can cause food poisoning.
People are also being affected by more severe, if not more numerous, hurricanes due to the extra energy in the ocean and atmosphere.
Coral reefs, which support around a quarter of all marine species, are suffering from episodes of bleaching that have increased three-fold over the past 30 years.
This bleaching occurs when prolonged high temperatures cause coral to expel its symbiotic algae, causing it to whiten and ultimately die, such as the mass mortality that has gripped the Great Barrier Reef.

Earth temperature timeline
(click to magnify)

Ocean acidification, where rising carbon dioxide absorption increases the acidity of the water, is making it harder for animals such as crabs, shrimps and clams to form their calcium carbonate shells.
The IUCN report recommends expanding protected areas of the ocean and, above all, reduce the amount of heat-trapping gases pumped into the atmosphere.
“The only way to preserve the rich diversity of marine life, and to safeguard the protection and resources the ocean provides us with, is to cut greenhouse gas emissions rapidly and substantially,” said Inger Andersen, director general of the IUCN.

Links :



Wednesday, September 7, 2016

White House unveils stunning interactive 3D maps of Alaska in bid to better track climate change in the Arctic

 In efforts to track the effects of climate change, researchers have launched a collaborative effort to create satellite-based elevation maps of the entire Arctic by 2017.
The first series of maps reveals the terrain of Alaska in unprecedented detail. Wolverine Glacier, pictured,  is a valley glacier in the mountains of south-central Alaska's Kenai Peninsula

From DailyMail by Cheyenne MacDonald
  • The maps were produced as a result of an Executive Order from President Obama last year
  • The project aimed to create high-resolution, satellite based maps of Alaska by 2016 and the Arctic by 2017
  • The models were created using 2-meter resolution images from Digital Globe commercial satellites
As climate change poses an ongoing threat to the global ecosystem, few areas are being affected as rapidly or severely as the Arctic - which is is warming at double the rate of the global average temperature.
In efforts to track these changes and mitigate the risks they present, a White House-backed project plans to create satellite-based elevation maps of the entire Arctic by 2017.
Today, the first maps showing Alaska's terrain were released.

The project is the result of an Executive Order made by President Obama last year, and now, the National Geospatial-Intelligence Agency and the National Science Foundation have completed a major step toward this goal, revealing a stunning new series of 3D maps plotting Alaska’s terrain.
The Arctic Digital Elevation Models (Arctic DEMs) are all publicly available through an online portal, according to the White House’s official blog.
Visualizations of this kind can help to track sea level changes and monitor coastal erosion to help develop effective strategies as climate change worsens the effects of storms.
As Arctic warms and ice subsequently shrinks, open water will gain more area, putting coastal communities at risk.

The models were created using 2-meter resolution images from Digital Globe commercial satellites, providing an unprecedented glimpse at inhospitable and remote areas of the Arctic.
The new maps revealed by the White House show numerous locations across Alaska, including Kodiak Benny Benson State Airport, Wolverine Glacier, Anchorage, and Mount Aniakchak.
While the project is led by the NGA and NSF, many other organizations are involved as well, including the U.S. Geological Survey, the state of Alaska, Ohio State University, University of Illinois, Cornell University, the Polar Geospatial Center at the University of Minnesota, and ESRI.

The map above focuses on Kodiak Benny Benson State Airport.
The image highlights the rugged relief surrounding the three runways of the airport and clearly depicts vegetation, buildings, coastal features and the drainage network of the area.
Blue indicates low elevations while green shows medium to higher elevations, with red revealing peaks

 This map shows Mount Aniakchak, a volcanic caldera located in the Aniakchak National Monument and Preserve in the Aleutian Range of Alaska. Aniakchak is one of the wildest and least visited places in the National Park System

President Obama's trip to the Arctic

In January 2015, Obama issued the Executive Order on Enhancing Coordination of National Efforts in the Arctic.
The resulting project pledged to create the ‘first-ever, publicly available, high-resolution, satellite-based, elevation maps of Alaska’ by 2016 and the entire Arctic by 2017, according to the White House’s official blog.
Months later, he became the first sitting US president to visit the Alaskan Arctic.
‘If another country threatened to wipe out an American town, we’d do everything in our power to protect it,’ President Obama said during his visit to the town of Kotzebue.
‘Well, climate change poses the same threat right now. And that’s why I care so deeply about this.’

The project is the result of an Executive Order made by President Obama last year, and now, the National Geospatial-Intelligence Agency and the National Science Foundation have completed a major step toward this goal, revealing a stunning new series of 3D maps plotting Alaska’s terrain. Obama is pictured above during his visit to Alaska

‘For the United States, the Arctic is simultaneously a strategic challenge and a human challenge,’ said Dr. Fabien Laurier, Senior Policy Advisory, White House Office of Science and Technology Policy.
‘These maps will allow all of our Arctic stakeholders, ranging from Native and Tribal, state and local, the Federal family, our international partners and the business community, to develop the best responses to the changing Arctic.’
The researchers say these types of maps can be produced regularly for weekly, monthly, or annual updates on the changing terrain, thanks to satellite capabilities.
The maps show the city of Kotzebue, which President Obama visited a year ago.

Kotzebue is located in the Northwest Arctic Borough right above the Arctic Circle
Kozebue Harbor the the GeoGarage (NOAA chart)



The Seward Peninsula is pictured.
‘If another country threatened to wipe out an American town, we’d do everything in our power to protect it,’ President Obama said during his visit to the town of Kotzebue.
‘Well, climate change poses the same threat right now. And that’s why I care so deeply about this’
‘This technology and resulting contributions are game changers for the Arctic region,’ said Robert Cardillo, Director, NGA.
‘Traditionally, our capabilities for imagery collection were limited to the availability and frequency of low flying aircraft.
‘With this renewed effort involving the US government, universities, and the commercial imagery and scientific communities, the possibilities for understanding this part of the world are practically limitless.’


The map above illustrates Anchorage Alaska based on new elevation data.
The researchers say these types of maps can be produced regularly for weekly, monthly, or annual updates on the changing terrain, thanks to satellite capabilities
Links :