Monday, September 5, 2016

No sailors needed: robot sailboats scour the oceans for data

Saildrone, an unmanned, fully autonomous ocean vessel powered by wind and solar energy, recently completed a record-breaking ocean voyage, crossing 2,100 miles of Pacific from San Francisco to Hawaii.
A small fleet of Saildrones will soon be patrolling the world's oceans; they'll track sharks, stand guard over protected areas and gather critical data to help stop climate change

From NYTimes by John Markoff

Two robotic sailboats trace lawn-mower-style paths across the violent surface of the Bering Sea, off the coast of Alaska.
The boats are counting fish — haddock, to be specific — with a fancy version of the fish finder sonar you’d find on a bass fishing boat.

 A Saildrone boat being carried back to its hangar in Alameda, Calif.
The self-sailing vessel can gather research data much more cheaply than ships with crews. 
Credit Jason Henry for The New York Times

About 2,500 miles away, Richard Jenkins, a mechanical engineer and part-time daredevil, is tracking the robot sailboats on a large projection screen in an old hangar that used to be part of the Alameda Naval Air Station.
Now the hangar is the command center of a little company called Saildrone.
At least 20 companies are chasing the possibly quixotic dream of a self-driving car in Silicon Valley.
But self-sailing boats are already a real business.
While they are counting fish, Saildrone’s boats are also monitoring the seals that feed on the fish by tracking transponders that scientists have attached to the heads of the seals.
“We can tell them what size fish they are eating and why they are going there,” said Mr.
Jenkins, who is the chief executive and a co-founder of the company.

 The Saildrone is a wind powered autonomous vehicle controlled from shore via satellite communications.
As part of the Innovative Technology for Arctic Exploration program, PMEL partnered with two NOAA Cooperative Institutes and Saildrone Inc. to deploy two Saildrones on a 97 day mission in the Bering Sea in the spring of 2015 .

Last summer, working with scientists and engineers from the National Oceanic and Atmospheric Administration, the boats skimmed along the edge of the retreating Arctic ice cap, giving scientists a detailed account of temperature, salinity and ecosystem information that would have been difficult and expensive to obtain in person.

The Saildrone autonomous sailboats look a little like shrunken America’s Cup racing yachts — small trimarans with hard, carbon-fiber sails.
The Saildrone’s carbon fiber sail acts like an aircraft wing.
When air passes over it, thrust is created.
The sail is stabilized by a counterweight that is placed in front of it and a tab trailing behind it that can automatically make small corrections to make sure it maintains an efficient angle to the wind.
Underneath the boat are both a rudder to aid in steering and a keel, which will right the boat if it is knocked over.
The big difference, of course, is that there are no sailors on board.
The boats are controlled through communications satellites from the operations center here as they collect oceanographic data and monitor fish stocks and the environment.

 A saildrone boat in San Francisco Bay.
The drone is a trimaran with a carbon-fiber sail. 
Jason Henry for The New York Times

One day, they may be used for weather prediction, oil and gas industry ocean operations, or even to police illegal fishing.
Mr. Jenkins has a much grander vision.
He believes the missing piece of the puzzle to definitively comprehend the consequences of global warming is scientific data.
He envisions a fleet of thousands or even tens of thousands of his 23-foot sailboats creating a web of sensors across the world’s oceans.
Vast amounts of data collected by his robots could reveal with greater detail the extent and rate at which global warming might become an existential threat to humanity and whether it is happening in decades rather than centuries.
That is, if someone is willing to pay for all that.
The boats are not sold — the scientists, commercial fisherman and weather predictors pay a $2,500-a-day fee per boat for the data they produce.

 Richard Jenkins uses a smartphone to plug in coordinates and communicate with the drone. 
Jason Henry for The New York Times

Saildrone got its start with $2.5 million in grants from Eric Schmidt, Google’s executive chairman, and his wife, Wendy Schmidt.
And Mr. Jenkins’s company recently received $14 million in financing from three socially minded venture capital firms: Social Capital, Lux and Capricorn.
“My interest in Saildrone is very practical,” said Chamath Palihapitiya, a former Facebook executive who is the founder of Social Capital.
“Let’s stop arguing about what is happening, and let’s measure.
Once you have data and it’s statistically significant and valid, then we can get to the next step, which is to find what the structural reforms are that need to happen.”

Missions can last  6 - 12 months, with all data streamed live via satellite
and accessible via Saildrone's API.

Each boat is packed with an armory of scientific sensors that beam data back to the control center.
“It’s not so much taking the earth’s temperature as it is its pulse,” said Mr. Jenkins, a 39-year-old, tousle-haired mechanical engineer who was trained at Imperial College London.
He has found willing clients in ocean scientists and engineers who previously had limited ways to collect highly specific and accurate data about the ocean surface.
“Richard had a great boat but no scientific sensors on it, and we had sensors but no boat,” said Christian Meinig, the director of engineering at the NOAA Pacific Marine Environmental Laboratory.
The scientists at the laboratory have already begun to use the boats to enhance their study of the El Niño warm-water pattern in the Pacific Ocean.

“Data collected by the Saildrones will not only transform the understanding of our oceans, but will also bring insight into issues like weather, fish populations, ocean acidification and climate change — processes that will affect every person on this planet.”
The breakthrough for the robots was a sailboat design that Mr. Jenkins originally began pursuing when he set out to capture the world land-sailing speed record in 1999.
He succeeded in 2009 in a “land yacht” called Greenbird that reached a speed of 126.2 m.p.h.
on a dry lake bed in Southern California.
To reach such a high speed and remain stable, Mr. Jenkins replaced the traditional sailboat sail with a rigid vertical carbon-fiber wing coupled with a unique stabilizer trailing behind the wing that would automatically adjust the wing faster than a human sailor could respond by pulling ropes.
He has repurposed the wing to sail at slower speeds and to autonomously travel anywhere in the world.

Last year, in an experiment, one of the Saildrone boats made its way from Alameda to the Equator in 42 days, collecting a wealth of ocean surface data along the way.
A scientific research vessel with a large human crew would be faster, but it would cost about $80,000 a day.

 Saildrones deployed in the Gulf of Mexico,  demonstrating safe and precise piloting in one of the most challenging environments.

That researchers can move the autonomous boats — unlike the static ocean buoys that are now typically used — is significant, because it allows scientists to alter collection patterns in response to ocean conditions and interesting discoveries.
“A self-correcting model is really a superpowerful way of doing things,” said Christopher Sabine, an oceanographer who is director of Pacific Marine Environmental Laboratory.
“For climate modeling we need to know what’s going on year-round, and to be perfectly frank, we don’t like to go out into the middle of winter.”


Saildrone is not the only autonomous vehicle on the sea.
Liquid Robotics, based in Sunnyvale, Calif., makes a boat called Wave Glider, which uses wave rather than wind action to move at more than two knots and carry up to 100 pounds of instruments.
The Saildrone payload is more than twice as large, and the boat is potentially twice as fast.
The sensor suite is made up of more than a dozen instruments that capture wind speeds, radiation, still and video imagery, temperature, ocean chemistry, and other data.

1-minute glimpse into the preparation work conducted for the collaborative 2016 research cruise between NOAA, Saildrone, Inc. and the University of Washington. Courtesy of NOAA Fisheries 

Mr. Jenkins’s contention is that a fleet of robot sensors spread across an ocean like the Pacific will make a huge difference in both weather and climate prediction.
For example, a better understanding of a weather phenomenon like El Niño could make a difference worth hundreds of millions of dollars.
“They completely failed to see the last one coming,” he said, noting that climate scientists acknowledge they don’t have the spatial resolution to make accurate predictions.
“They have a pressing need for more data.”

Links :

Sunday, September 4, 2016

Free diving under ice

Finnish freediver Johanna Nordblad holds the world record for a 50-meter dive under ice.
She discovered her love for the sport through cold-water treatment while recovering from a downhill biking accident that almost took her leg.
British director and photographer Ian Derry captures her taking a plunge under the Arctic ice.
“Once I had met her and gone to the location—which at that point was -24C—I knew I had to make the film. The environment and the silence there is something I will never forget.
“I dived under the ice to get a perspective on it and it was literally breath taking. What she does is so close to the edge, but she does it in such a comfortable way.”

Saturday, September 3, 2016

Monitoring the Oceans from Space MOOC

Gain a deeper understanding of the oceans through the upcoming, free, Monitoring the Oceans from Space MOOC run by EUMETSAT in support of the EU’s Copernicus programme.

Join oceanographer and BBC science presenter Dr Helen Czerski, (University College, London), Dr Hayley Evers-King, marine Earth observation scientist (Plymouth Marine Laboratory), and Dr Mark Higgins, (EUMETSAT), to learn more about how the satellites are used to keep an eye on the health of the oceans.

The Massive Open Online Course, funded by the EU’s Copernicus programme, is aimed at a general audience and will give an introduction to the benefits and potential uses of satellite-based ocean observations.
It will explain how to access and use marine Earth observation data and information from Copernicus/EUMETSAT missions, as well as the Copernicus Marine Environment Monitoring Service.
This free online course runs for five weeks from 24 October 2016 on the FutureLearn platform.
You can REGISTER for the course here.

Friday, September 2, 2016

The race for vast remote ‘marine protected areas’ may be a diversion

The largest MPAs, updated March 2016.
The Hawaii reserve is now four times larger. 

From The Conversation by Peter JS Jones & Elizabeth De Santo

The seas around Hawaii are set to become the world’s largest marine protected area, US president Barack Obama has announced.

 Map of the 2014 expansion of the Pacific Remote Islands Marine National Monument.
 Marine protected areas in the US Pacific EEZ.

The Papahānaumokuākea Marine National Monument will be expanded to more than 1.5m square kilometres – that’s as big as France, Spain and Germany combined.
If this story sounds familiar that’s because it is.
Last year, the UK created the previous world’s largest continuous marine reserve around the Pitcairn Islands, and it set up another huge protected area around Ascension Island in January 2016.
Chile, France and New Zealand have all made similar moves in the past few years, turning the waters surrounding their most remote island territories (such as Easter Island) into huge nature reserves.
Supporters say these marine protected areas, known as MPAs, have a key role to play in marine conservation as they protect from fishing, mining, drilling or other human activities, and allow habitats and species to be restored.
Yet these protections might be undermining the very aims of global marine conservation targets.
As we argue in a viewpoint published in the journal Marine Policy, it’s not enough to simply cover the remotest parts of our oceans in notional “protection” – we need to focus on seas closer to shore, where most of the fishing and drilling actually happens.

 Tracking marine protection declarations globally. April 2016.

Boom in massive reserves

Under the UN’s Convention on Biological Diversity, signed by almost every country in the world, one of the agreed targets is to designate 10% of the area of the world’s oceans as MPA by 2020.
We are a long way from this, however, with less than 4% of the global marine area currently protected.
Even this is largely thanks to vast remote MPAs in distant seas that are subject to few human pressures.
While there are more than 6,000 MPAs in total, the majority (62%) of the global coverage is down to just 24 huge areas.


Recent proposals to increase the MPA target to 30% of the world’s seas, to be discussed at the World Conservation Congress beginning on September 1, can arguably only be met through an increasing focus on the designation of vast remote MPAs.
From the perspective of national governments, Hawaii, Ascension and similar protected areas are an easy win.
Leaders gain some green credentials while making progress towards their country’s individual MPA target, and all for minimal political cost.
After all, these vast protected areas tend to be in overseas territories without much commercial use. Given this easy option is available, why go through the politically and economically expensive process of creating smaller protected areas closer to the mainland?
However, as we discuss in our paper, there are concerns that marine conservation aims could be undermined by this focus on a few big areas.
The marine biodiversity target is about much more than the proportion of the seas that are covered.
It also states, for instance, that the networks of MPAs must be effective, meaning restrictions on fishing, mining and so on are actually enforced.
But how do you properly police a patch of ocean almost as big as the state of Alaska? The very vastness and isolation of these protected zones around Pacific or Atlantic islands means they are extremely expensive to patrol.
True, emerging satellite technology can provide remote surveillance of fishing vessels.
But gaining sufficient evidence for prosecutions and stiff penalties remains a challenge, despite a recent agreement between governments to detain illegal fishing vessels and block their access to markets.
The biodiversity target also specifies that the MPA networks must be representative, in that they should protect typical examples of habitats and species in each of the world’s 232 ecoregions, and well connected, in that ecological processes such as fish migrations and larval dispersal should be able to bridge the gaps between protected areas.
These elements of the targets can arguably only be met through a more even spread of protected areas, including smaller designations in more intensively used “metropolitan seas” closer to towns and cities.
Often, this will include zones where some fishing and extraction is allowed.
In the Isla Natividad MPA in Baja California, sustainable levels of abalone (sea snail) fishing is allowed while certain “no-take zones” restore the marine ecosystem.
Similarly, the Tubbataha MPA in the Philippines provides for both the restoration of coral reefs and sustainable dive tourism.
In both these MPAs, fishermen can benefit when fish and their larvae swim or drift out from these restored areas into fished areas.
Marine reserves in busier waters are more challenging, but recent studies indicate their effectiveness is feasible.
Last, but certainly not least, MPA networks must be equitably managed, and it’s not clear whether these huge areas fit the bill.
Closing the entirety of the seas around remote islands could unfairly impact the few local people who rely on the sea for food and income.
An over-reliance on vast remote protected areas could undermine other elements of the 10% MPA target such as their requirements to be effective, representative, connected and equitable.
We’ll need lots of different types of marine protection in order to actually achieve these conservation aims.
The race towards vast remote MPAs should not divert attention, resources and political will away from the need for smaller protected areas closer to home.

Links : 



Thursday, September 1, 2016

Brazil DHN update in the GeoGarage platform

5 new raster charts added + 24 updated charts