Thursday, August 11, 2016

Seas aren’t just rising, scientists say — it’s worse than that. They’re speeding up.

Past sea level rise is not captured by models yet, in particular the response from ice sheets in Antarctica due to global warming.
Projections therefore can often be regarded to potentially underestimate future sea level rise.
For example, Overpeck et al. (2006), and Hansen (2007) suggest possibilities which could eventually lead to a nonlinear response from ice sheets - accelerating the current observed sea level rise.

From Washington Post by Chris Mooney

On a warming Earth, seas inevitably rise, as ice on land melts and makes its way to the ocean.
And not only that — the ocean itself swells, because warm water expands.
We already know this is happening — according to NASA, seas are currently rising at a rate of 3.5 millimeters per year, which converts to about 1.4 inches per decade.

However, scientists have long expected that the story should be even worse than this.
Predictions suggest that seas should not only rise, but that the rise should accelerate, meaning that the annual rate of rise should itself increase over time.
That’s because the great ice sheets, Greenland and Antarctica, should lose more and more mass, and the heat in the ocean should also increase.

 The altimeter record with decadal rates of change indicated.
Estimates during the early stages of the record (dashed)
are particularly subject to instrument related uncertainty

The problem, or even mystery, is that scientists haven’t seen an unambiguous acceleration of sea level rise in a data record that’s considered the best for observing the problem — the one that began with the TOPEX/Poseidon satellite, which launched in late 1992 and carried an instrument, called a radar altimeter, that gives a very precise measurement of sea level around the globe.
(It has since been succeeded by other satellites providing similar measurements.)
This record actually shows a decrease in the rate of sea level rise from the first decade measured by satellites (1993 to 2002) to the second one (2003 to 2012).
“We’ve been looking at the altimeter records and scratching our heads, and saying, ‘why aren’t we seeing an acceleration in the satellite record?’ We should be,” said John Fasullo, a climate scientist at the National Center for Atmospheric Research in Boulder, Colorado.

In a new study in the open-access journal Scientific Reports, however, Fasullo and two colleagues say they have now resolved this problem.
It turns out, they say, that sea level rise was artificially masked in the satellite record by the fact that one year before the satellite launched, the Earth experienced a major cooling pulse.
The cause?
The 1991 eruption of Mount Pinatubo in the Philippines, which filled the planet’s stratosphere with aerosols that reflected sunlight away from the Earth and actually led to a slight sea level fall in ensuing years as the ocean temporarily cooled.
“What we’ve shown is that sea level acceleration is real, and it continues to be going on, it’s ongoing, and we understand why you don’t see it in the short satellite record,” said Fasullo, who conducted the research along with scientists from the University of Colorado in Boulder and Old Dominion University.

The study was performed using a suite of 40 climate change models to determine how the Pinatubo eruption affected seas and the global distribution of water.
The scientists estimate as a result that sea level not only fell between 5 and 7 millimeters due to a major ocean cooling event in the eruption’s wake, but then experienced a rebound, or bounce back, of the same magnitude once the influence of the eruption had passed.

 courtesy of Climate Central

This had a major effect on what the satellite record of sea level looks like, because the bounce-back occurred earlier in the record and made the sea level rise then appear extra fast.
So the researchers conclude that while no official acceleration trend can be seen in the satellite record now, that’s an artificial consequence of Pinatubo and should be gone over time — barring another Pinatubo-like event.
“Our initial impression of sea level rise was not only influenced by climate change and the rate of change, but the response and the recovery from the eruption itself,” says Fasullo.
“Those effects largely have ebbed by now, and once we get a few more years into the altimeter record, we should see a clear acceleration.
That’s really the punch line of the article.”
In fact, the researchers also removed the sea level effect of Pinatubo, and found that when they did so they could see sea level rise acceleration happening already.

 Altimetric satellites are able to measure sea level and can observe how it has been changing with climate change since 1992.
Not only can they tell us the global change but also the regional changes. Sea level changes are due to thermal expansion of water, melting of the polar ice caps and continental glaciers and water inputs from land.
Tide gauges are able to tell us that sea level rose at a slower rate before the 1990s and then the global sea level trend increased after that.
This is likely due to the increase of greenhouse gasses and climate change.
The continued observation of sea level by altimetric satellites will be able to inform us what the future of sea level is.
credit : CNES (Centre National d'Etudes Spatiales) and Mira Productions

Another study published last year also applied corrections to this body of satellite data, and similarly found that sea level rise has accelerated in the last 15 years.

One sea level rise expert who was not involved in the new study, Robert Kopp of Rutgers University, praised the work in response to a query from the Post.
The study, Kopp explained by email, found that the Pinatubo eruption would have caused seas to fall “just before the start of the altimetry record, the recovery from which was spread out of the remainder of the 1990s and therefore masked some of the acceleration that would otherwise have been seen in the tide-gauge record between the 1990s and the 2000s.
This makes strong physical sense.”
It also aligns better with actual observations from Greenland and Antarctica.
Scientists have shown that both of the Earth’s major ice sheets have seen an accelerating rate of ice loss in recent years, which ought to help drive an accelerating rate of sea level as well.


A record of Greenland mass loss based on satellite data from 2002 to the present day. Data are in gigatons, or GT, equivalent to 1 billion metric tons. (NASA)

Greenland looks like a big pile of snow seen from space using a regular camera.
But satellite radar interferometry helps us detect the motion of ice beneath the snow.
Ice starts flowing from the flanks of topographic divides in the interior of the island, and increases in speed toward the coastline where it is channelized along a set of narrow, powerful outlet glaciers.
In the east, these glaciers make their sinuous way through complex terrain at low speed.
They form long floating extensions that deform slowly in the cold north.
As we move toward sectors of higher snowfall in the northwest and centre west, ice flow speeds increase by nearly a factor 10, with many, smaller glaciers flowing straight down to the coastline at several kilometers per year.
This complete description of ice motion was only made possible from the coordinated effort of four space agencies: the Japanese Space Agency, the Canadian Space Agency, the European Space Agency, and NASA's Jet Propulsion Laboratory.
The data will help scientists improve their understanding of the dynamics of ice in Greenland and in projecting how the Greenland Ice Sheet will respond to climate change in the decades and centuries to come.
This animation shows how ice is naturally transported from interior topographic divides to the coast via glaciers.
The colors represent the speed of ice flow, with areas in red and purple flowing the fastest at rates of kilometers per year.
The vectors indicate the direction of flow.

The key question then becomes just how fast the annual rate of sea level rise can actually increase.
In one thought experiment recently, former NASA climate scientist James Hansen calculated the consequences if the “doubling time” for ice loss is as fast as 10 years — finding dramatic sea level increases as a result.
“Doubling times of 10, 20 or 40 years yield sea level rise of several meters in 50, 100 or 200 years,” Hansen’s study concluded.
However, it is far from clear at this point that ice loss is actually increasing this rapidly.

 GRACE satellites show as ice melts, Earth's gravitational and rotational fields change.
An animation showing “sea level fingerprints,” or patterns of rising and falling sea levels across the globe in response to changes in Earth’s gravitational and rotational fields.
Major changes in water mass can cause localized bumps and dips in gravity, sometimes with counterintuitive effects.
Melting glaciers, for example, actually cause nearby sea level to drop; as they lose mass, their gravitational pull slackens, and sea water migrates away. In this animation, computed from data gathered by the twin GRACE satellites between April 2002 and March 2015, sea level is dropping around rapidly melting Greenland (orange, yellow).
But near coastlines at a sufficient distance, the added water causes sea levels to rise (blue).
The computational method is described in Adhikari et al. (2016, Geoscientific Model Development). And, these solutions are presented in Adhikari and Ivins (2016, Science Advances).

So far, the U.N.’s Intergovernmental Panel on Climate Change officially estimates that the high-end sea-level rise projection for 2100 is lower than some of these scenarios, closer to about 1 meter (3.3 feet) by that year.
But that has recently been challenged by new work estimating that Antarctica alone could add this much to global sea levels by 2100 if high levels of human greenhouse gas emissions continue.

Fasullo says that debate — over precisely how fast acceleration happens, or where that leaves us in 2100 — remains unresolved.
For now, he says, at least it’s pretty clear that the acceleration is actually happening as expected.
“Accelerated sea level rise is real, and it’s ongoing, and it’s not something we should doubt based on the altimeter record,” said Fasullo.

Links :

Wednesday, August 10, 2016

The case for beautiful cartography in a world of digital maps


From Curbed by Patrick Sisson

In a world where our phones are our navigators, a new book argues mapmakers should make time for better design

Jean-Charles Adolphe Alphand, Plan des Courbes de Niveau du Parc des Buttes Chaumonts, Promenades de Paris. Paris: J. Rothschild, 1867–71.
Courtesy of the Frances Loeb Library, Harvard University Graduate School of Design
 
Today’s modern cities run on digital maps.
From navigating through our neighborhoods with Google Maps and watching our ride slowly approach on Uber, to dodging gridlock with Waze or hunting digital creatures with Pokemon, the average person spends more time with maps than ever before.
But during what could perhaps be called a cartographic golden age, at least on our mobile devices, are we losing some of the aesthetic pleasures and communicative power that comes from a well-designed map?

Beautiful old map of Venice (Merian, 1650)

In the new book Cartographic Grounds: Projecting the Landscape Imaginary (Princeton Architecture Press), Jill Elizabeth Desimini, a professor of landscape design at Harvard University's Graduate School of Design, argues for a more holistic approach to mapmaking in the digital age.
The prevalence of Google Maps, an extremely functional and useful tool, can limit the scope of what we think a map can do, and just how much design can impact its effectiveness and communication potential. As users are presented with maps that contain more and more information, they tend to depend on them and their directions, she says, and lose their critical eye.
As cartography moves toward non-physical things, such as check-ins, and abstract forces, Cartographic Grounds raises the question of geographic precision and just what it means to map well.

 This is a great 19th century map of Bordeaux France,
complete with nice illustrations of the waterfront.

“Even Google Maps has an aesthetic point of view,” says Desimini, “and people don’t always think about it. They make a lot of choices about how things are drawn and how information is presented. We take it as a kind of standard, and don’t really make demands about graphic quality, or think about what’s missing."

 Discover the action around you with the updated Google Maps

Cartographic Grounds, which she co-wrote with Charles Waldheim, looks at mapping through the lens of design.
Each of the book’s 10 section explore a different convention, such as shaded relief and cross-hatching, showcasing various approaches in an attempt to argue for a more design-oriented approach to cartography.

 Map of Biarritz, France, published around 1914 by German cartography firm, Wagner and Debes.
courtesy of IDVsolutions

Centuries of case studies, from ancient watercolors of European cities to computer generated climate surveys, offer a meditation of minimalism and good communication.
The underlying message, of simple and considered visual communication, reads like a page from the book of Edward Tufte.
Desimini believes there is a happy medium for modern cartographers, a place where precise design meets the functionality of modern mobile apps.

 Stamen watercolors

She points to the work of a studio such as Stamen Design in San Francisco as great examples of work that meets the high bar we set for maps in the digital age, cutting through the clutter while still being data rich.

Bouvet island (Norsk Polar Institute)

There’s a simple, profound power to maps, to inspire exploration.
Desimini says that at a time when our basic cartographic literacy is being challenged—think of how many times you or someone you know has struggled with directions when their phone dies—it’s more important than ever to make room for good design.


“The more ubiquitous something like Google Maps becomes, the less likely we are to look at other types of information,” she says.
“I’m arguing for multiple points of view, and maps that would allow us to see the world differently and respond in different ways.”

Links :

Tuesday, August 9, 2016

Brazil DHN update in the GeoGarage platform

2 new nautical raster charts for the Bay of Rio do Janeiro
see GeoGarage news

Links :
new chart for Rio do Janeiro (especially for the Olympic Games sailing competition) 

 A page from the U.S. Sailing Team’s “Rio Weather Playbook.” 
U.S. Sailing Team

 Image extracted from page 172 of A Voyage to Cochin China, in the years 1792, and 1793: containing a general view of the productions, and political importance of this kingdom; and also of such European settlements as were visited on the voyage, with sketches of the manners, character, and condition of their inhabitants.
To which is annexed an account of a journey, made in the years 1801 and 1802, to the residence of the chief of the Booshuana nation …, by BARROW, John - Sir. Original held and digitised by the British Library.
Copied from Flickr.
Note: The colours, contrast and appearance of these illustrations are unlikely to be true to life.
They are derived from scanned images that have been enhanced for machine interpretation and have been altered from their originals.

Environmental records shattered as climate change 'plays out before us'

 Earth's oceans could be concealing a mystery about climate change.
Researchers have recently found evidence of hidden heat hundreds of meters below the ocean's surface.

From The Guardian by Oliver Milman

Temperatures, sea levels and carbon dioxide all hit milestones amid extreme weather in 2015, major international ‘state of the climate’ report finds

The world is careening towards an environment never experienced before by humans, with the temperature of the air and oceans breaking records, sea levels reaching historic highs and carbon dioxide surpassing a key milestone, a major international report has found.
The “state of the climate” report, led by the National Oceanic and Atmospheric Administration (Noaa) with input from hundreds of scientists from 62 countries, confirmed there was a “toppling of several symbolic mileposts” in heat, sea level rise and extreme weather in 2015.

Two key climate change indicators have broken numerous records through the first half of 2016, according to NASA analyses of ground-based observations and satellite data.
Each of the first six months of 2016 set a record as the warmest respective month globally in the modern temperature record, which dates to 1880.
Meanwhile, five of the first six months set records for the smallest monthly Arctic sea ice extent since consistent satellite records began in 1979.
NASA researchers are in the field this summer, collecting data to better understand our changing climate.

“The impacts of climate change are no longer subtle,” Michael Mann, a leading climatologist at Penn State, told the Guardian.
“They are playing out before us, in real time. The 2015 numbers drive that home.”



Last year was the warmest on record, with the annual surface temperature beating the previous mark set in 2014 by 0.1C.
This means that the world is now 1C warmer than it was in pre-industrial times, largely due to a huge escalation in the production of greenhouse gases.
The UN has already said that 2016 is highly likely to break the annual record again, after 14 straight months of extreme heat aided by a hefty El Niño climatic event, a weather event that typically raises temperatures around the world.

The oceans, which absorb more than 90% of the extra CO2 pumped into the atmosphere, also reached a new record temperature, with sharp spikes in the El Niño-dominated eastern Pacific, which was 2C warmer than the long-term average, and the Arctic, where the temperature in August hit a dizzying 8C above average.



The thermal expansion of the oceans, compounded by melting glaciers, resulted in the highest global sea level on record in 2015.
The oceans are around 70mm higher than the 1993 average, which is when comprehensive satellite measurements of sea levels began.
The seas are rising at an average rate of 3.3mm a year, with the western Pacific and Indian Oceans experiencing the fastest increases.

These changes are being driven by a CO2 concentration that surpassed the symbolic 400 parts per million mark at the Mauna Loa research station in Hawaii last year.
The Noaa report states that the global CO2 level was a touch under this, at 399.4ppm, an increase of 2.2ppm compared to 2014.


Noaa said other “remarkable” changes in 2015 include the Arctic’s lowest maximum sea ice extent in the 37-year satellite record, recorded in February 2015.
The world’s alpine glaciers recorded a net annual loss of ice for the 36th consecutive year and the Greenland ice sheet, which would balloon sea levels by around 7m should it disintegrate, experienced melting over more than 50% of its surface.

The rapid changes in the climate may have profound consequences for humans and other species. In June last year, a severe heatwave claimed over 1,000 lives in Karachi, Pakistan.
Severe drought caused food shortages for millions of people in Ethiopia, with a lack of rainfall resulting in “intense and widespread” forest fires in Indonesia that belched out a vast quantity of greenhouse gas.

Diminishing sea ice is causing major walrus herds to haul themselves out on to land.
Arctic marine species, such as snailfish and polar cod, are being pushed out of the region by species coming from further south, attracted to the warming waters.
A huge algal bloom off the west coast of North America harmed marine life and fisheries.

For over 20 years, satellite altimeters have measured the sea surface height of our ever-changing oceans.
This series of images shows the complicated patterns of rising and falling ocean levels across the globe from 1993 to 2015.
Sea levels reflect changing currents (which tilt the sea surface), the redistribution of heat (which makes sea levels higher) and the long term rise in global sea levels that is the result of human-caused warming.
The globally averaged rise is traced out in the bottom right-hand corner.
These maps are made using data from at least two satellites at all times, and colors represent highs and lows between 30 cm of normal levels.
Toward the end, the expansion of last year's record-breaking El Niño can be seen in the tropical eastern Pacific.
The grids and figures were produced at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under the NASA MEaSUREs program (version JPL 1603).


Scientists have said there were underlying climate change trends at play but last year was also influenced by the strong El Niño event, which is when equatorial Pacific waters warm, leading to an array of weather effects around the world.
El Niño has also helped spur searing heat in 2016 but has now petered out.

Thomas Karl, director of Noaa national centers for environmental information, said that last year’s climate “was shaped both by long-term change and an El Niño event.
When we think about being climate resilient, both of these time scales are important to consider.
“Last year’s El Niño was a clear reminder of how short-term events can amplify the relative influence and impacts stemming from longer-term warming trends.”

Kate Willett, a senior scientist at Britain’s Met Office, said that there was a 75% annual increase in the amount of land that experienced severe drought last year.
“Looking at a range of climate measurements, 2015 was yet another highly significant year,” she said. “Not only was 2015 the warmest year on record by a large margin, it was also another year when the levels of dominant greenhouse gases reached new peaks.”

The state of the climate report is now in its 26th year.
The peer-reviewed series is published annually by the American Meteorological Society.

Links : 

Monday, August 8, 2016