Wednesday, August 10, 2016

The case for beautiful cartography in a world of digital maps


From Curbed by Patrick Sisson

In a world where our phones are our navigators, a new book argues mapmakers should make time for better design

Jean-Charles Adolphe Alphand, Plan des Courbes de Niveau du Parc des Buttes Chaumonts, Promenades de Paris. Paris: J. Rothschild, 1867–71.
Courtesy of the Frances Loeb Library, Harvard University Graduate School of Design
 
Today’s modern cities run on digital maps.
From navigating through our neighborhoods with Google Maps and watching our ride slowly approach on Uber, to dodging gridlock with Waze or hunting digital creatures with Pokemon, the average person spends more time with maps than ever before.
But during what could perhaps be called a cartographic golden age, at least on our mobile devices, are we losing some of the aesthetic pleasures and communicative power that comes from a well-designed map?

Beautiful old map of Venice (Merian, 1650)

In the new book Cartographic Grounds: Projecting the Landscape Imaginary (Princeton Architecture Press), Jill Elizabeth Desimini, a professor of landscape design at Harvard University's Graduate School of Design, argues for a more holistic approach to mapmaking in the digital age.
The prevalence of Google Maps, an extremely functional and useful tool, can limit the scope of what we think a map can do, and just how much design can impact its effectiveness and communication potential. As users are presented with maps that contain more and more information, they tend to depend on them and their directions, she says, and lose their critical eye.
As cartography moves toward non-physical things, such as check-ins, and abstract forces, Cartographic Grounds raises the question of geographic precision and just what it means to map well.

 This is a great 19th century map of Bordeaux France,
complete with nice illustrations of the waterfront.

“Even Google Maps has an aesthetic point of view,” says Desimini, “and people don’t always think about it. They make a lot of choices about how things are drawn and how information is presented. We take it as a kind of standard, and don’t really make demands about graphic quality, or think about what’s missing."

 Discover the action around you with the updated Google Maps

Cartographic Grounds, which she co-wrote with Charles Waldheim, looks at mapping through the lens of design.
Each of the book’s 10 section explore a different convention, such as shaded relief and cross-hatching, showcasing various approaches in an attempt to argue for a more design-oriented approach to cartography.

 Map of Biarritz, France, published around 1914 by German cartography firm, Wagner and Debes.
courtesy of IDVsolutions

Centuries of case studies, from ancient watercolors of European cities to computer generated climate surveys, offer a meditation of minimalism and good communication.
The underlying message, of simple and considered visual communication, reads like a page from the book of Edward Tufte.
Desimini believes there is a happy medium for modern cartographers, a place where precise design meets the functionality of modern mobile apps.

 Stamen watercolors

She points to the work of a studio such as Stamen Design in San Francisco as great examples of work that meets the high bar we set for maps in the digital age, cutting through the clutter while still being data rich.

Bouvet island (Norsk Polar Institute)

There’s a simple, profound power to maps, to inspire exploration.
Desimini says that at a time when our basic cartographic literacy is being challenged—think of how many times you or someone you know has struggled with directions when their phone dies—it’s more important than ever to make room for good design.


“The more ubiquitous something like Google Maps becomes, the less likely we are to look at other types of information,” she says.
“I’m arguing for multiple points of view, and maps that would allow us to see the world differently and respond in different ways.”

Links :

Tuesday, August 9, 2016

Brazil DHN update in the GeoGarage platform

2 new nautical raster charts for the Bay of Rio do Janeiro
see GeoGarage news

Links :
new chart for Rio do Janeiro (especially for the Olympic Games sailing competition) 

 A page from the U.S. Sailing Team’s “Rio Weather Playbook.” 
U.S. Sailing Team

 Image extracted from page 172 of A Voyage to Cochin China, in the years 1792, and 1793: containing a general view of the productions, and political importance of this kingdom; and also of such European settlements as were visited on the voyage, with sketches of the manners, character, and condition of their inhabitants.
To which is annexed an account of a journey, made in the years 1801 and 1802, to the residence of the chief of the Booshuana nation …, by BARROW, John - Sir. Original held and digitised by the British Library.
Copied from Flickr.
Note: The colours, contrast and appearance of these illustrations are unlikely to be true to life.
They are derived from scanned images that have been enhanced for machine interpretation and have been altered from their originals.

Environmental records shattered as climate change 'plays out before us'

 Earth's oceans could be concealing a mystery about climate change.
Researchers have recently found evidence of hidden heat hundreds of meters below the ocean's surface.

From The Guardian by Oliver Milman

Temperatures, sea levels and carbon dioxide all hit milestones amid extreme weather in 2015, major international ‘state of the climate’ report finds

The world is careening towards an environment never experienced before by humans, with the temperature of the air and oceans breaking records, sea levels reaching historic highs and carbon dioxide surpassing a key milestone, a major international report has found.
The “state of the climate” report, led by the National Oceanic and Atmospheric Administration (Noaa) with input from hundreds of scientists from 62 countries, confirmed there was a “toppling of several symbolic mileposts” in heat, sea level rise and extreme weather in 2015.

Two key climate change indicators have broken numerous records through the first half of 2016, according to NASA analyses of ground-based observations and satellite data.
Each of the first six months of 2016 set a record as the warmest respective month globally in the modern temperature record, which dates to 1880.
Meanwhile, five of the first six months set records for the smallest monthly Arctic sea ice extent since consistent satellite records began in 1979.
NASA researchers are in the field this summer, collecting data to better understand our changing climate.

“The impacts of climate change are no longer subtle,” Michael Mann, a leading climatologist at Penn State, told the Guardian.
“They are playing out before us, in real time. The 2015 numbers drive that home.”



Last year was the warmest on record, with the annual surface temperature beating the previous mark set in 2014 by 0.1C.
This means that the world is now 1C warmer than it was in pre-industrial times, largely due to a huge escalation in the production of greenhouse gases.
The UN has already said that 2016 is highly likely to break the annual record again, after 14 straight months of extreme heat aided by a hefty El Niño climatic event, a weather event that typically raises temperatures around the world.

The oceans, which absorb more than 90% of the extra CO2 pumped into the atmosphere, also reached a new record temperature, with sharp spikes in the El Niño-dominated eastern Pacific, which was 2C warmer than the long-term average, and the Arctic, where the temperature in August hit a dizzying 8C above average.



The thermal expansion of the oceans, compounded by melting glaciers, resulted in the highest global sea level on record in 2015.
The oceans are around 70mm higher than the 1993 average, which is when comprehensive satellite measurements of sea levels began.
The seas are rising at an average rate of 3.3mm a year, with the western Pacific and Indian Oceans experiencing the fastest increases.

These changes are being driven by a CO2 concentration that surpassed the symbolic 400 parts per million mark at the Mauna Loa research station in Hawaii last year.
The Noaa report states that the global CO2 level was a touch under this, at 399.4ppm, an increase of 2.2ppm compared to 2014.


Noaa said other “remarkable” changes in 2015 include the Arctic’s lowest maximum sea ice extent in the 37-year satellite record, recorded in February 2015.
The world’s alpine glaciers recorded a net annual loss of ice for the 36th consecutive year and the Greenland ice sheet, which would balloon sea levels by around 7m should it disintegrate, experienced melting over more than 50% of its surface.

The rapid changes in the climate may have profound consequences for humans and other species. In June last year, a severe heatwave claimed over 1,000 lives in Karachi, Pakistan.
Severe drought caused food shortages for millions of people in Ethiopia, with a lack of rainfall resulting in “intense and widespread” forest fires in Indonesia that belched out a vast quantity of greenhouse gas.

Diminishing sea ice is causing major walrus herds to haul themselves out on to land.
Arctic marine species, such as snailfish and polar cod, are being pushed out of the region by species coming from further south, attracted to the warming waters.
A huge algal bloom off the west coast of North America harmed marine life and fisheries.

For over 20 years, satellite altimeters have measured the sea surface height of our ever-changing oceans.
This series of images shows the complicated patterns of rising and falling ocean levels across the globe from 1993 to 2015.
Sea levels reflect changing currents (which tilt the sea surface), the redistribution of heat (which makes sea levels higher) and the long term rise in global sea levels that is the result of human-caused warming.
The globally averaged rise is traced out in the bottom right-hand corner.
These maps are made using data from at least two satellites at all times, and colors represent highs and lows between 30 cm of normal levels.
Toward the end, the expansion of last year's record-breaking El Niño can be seen in the tropical eastern Pacific.
The grids and figures were produced at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under the NASA MEaSUREs program (version JPL 1603).


Scientists have said there were underlying climate change trends at play but last year was also influenced by the strong El Niño event, which is when equatorial Pacific waters warm, leading to an array of weather effects around the world.
El Niño has also helped spur searing heat in 2016 but has now petered out.

Thomas Karl, director of Noaa national centers for environmental information, said that last year’s climate “was shaped both by long-term change and an El Niño event.
When we think about being climate resilient, both of these time scales are important to consider.
“Last year’s El Niño was a clear reminder of how short-term events can amplify the relative influence and impacts stemming from longer-term warming trends.”

Kate Willett, a senior scientist at Britain’s Met Office, said that there was a 75% annual increase in the amount of land that experienced severe drought last year.
“Looking at a range of climate measurements, 2015 was yet another highly significant year,” she said. “Not only was 2015 the warmest year on record by a large margin, it was also another year when the levels of dominant greenhouse gases reached new peaks.”

The state of the climate report is now in its 26th year.
The peer-reviewed series is published annually by the American Meteorological Society.

Links : 

Monday, August 8, 2016

Canada CHS update in the GeoGarage platform

56 nautical raster charts updated

Ocean floor to be mapped by 2030 ?

courtesy of GEBCO (Anthony Pharaoh, IHB)

From Hydro by Durk Haarsma

The first Forum for Future of the Ocean Floor Mapping was held in Monaco from 15 to 17 June 2016.
Some 200 delegates gathered, under the flag of General Bathymetric Chart of the Oceans (GEBCO), to discuss the future of the mapping of the ocean floor, aiming to come up with a roadmap towards 100% coverage of a mapped ocean floor.
GEBCO was established 113 years ago, also in Monaco. (see communiqué)
Hydro International talked with the chair of GEBCO Guiding Committee, former chief hydrographer of Japan, Shin Tani.
Shin Tani is adamant about the need of sharing data to reach the goal of a completely mapped ocean floor.
He is less sure about a time-frame in which the international ocean community will achieve that full coverage.

 The Mid-Atlantic Ridge as portrayed in GEBCO charts since 1903

Could you please explain to me why it is such an urgent matter to have this Forum right now?

‘There are many, many reasons.
Let me name a few.
First of all, GEBCO has focused on the use by scientists.
Maybe a small group outside of the scientific community looked at GEBCO products as well; some keen about protecting the ocean, others interested in biodiversity or fisheries and recently ocean energy and tsunami modelling , but it is time now to broaden our scope.
GEBCO historically worked in areas deeper than 200 metres.
This was also even included in our guidelines, but that's almost obsolete.
We are looking at shallower water now as well.
We no longer have a hard boundary.
Inclusion of shallower-than-200m bathymetry was started around 1990, when gridding of digitised contour lines started, in order to restrict the funny reaction of gridding algorithm.
At around the same time the demand for new and bigger datasets arose, a demand that has grown ever since, in part also because of the focus on Marine Protected Areas (MPAs), wind turbines and the other areas of interest.
There is a clear demand for higher resolution data on shallower water.
We realise and recognise that we need to answer to that demand and therefore also have to consult on the exact demands.
Another factor that made clear that the boundary of 200 m depth is not a sustainable one, are the devastating tsunamis that have occurred over the last decades.
Scientists working on the prediction of tsunami’s propagation and inundation are also looking at us for answers on how the seafloor is shaped.
In general, one could say that there is a societal need, but also scientific curiosity and technological developments and GEBCO wants to respond to that.
A Forum such as this is the perfect way to discuss with stakeholders.’

Arctic Ocean Mapping from 1893 to 2016, IBCAO
courtesy of M. Jakobsson, University of Stockholm, Sweden

Will this result in a bigger role and more visibility for GEBCO?

‘Oh, yes.
By its nature, activities for GEBCO are of course voluntary and have been carried out in scientific environments.
The scientific researchers donate their time, in the office or maybe out of the office to contribute to GEBCO.
In addition, all data that we collect are basically data voluntarily donated from scientific vessels.
That also means that the data we obtain were limited to scientifically interesting areas, except for a few exceptions, for instance in Japan, where data was donated on the entire Exclusive Economic Zone around the island to GEBCO.
A very detailed bathymetric survey was conducted for the Extended Continental Shelf programme.
North American and European stakeholders have arranged the so called Galway Statement, which will end up in a lot of new data from the North Atlantic.
Similar project can be arranged between South Africa and Argentina and Chile and New Zealand, where bathymetric data are still really sparse.
I would like to improve the situation.
So there are already major developments that could make more data available for GEBCO to incorporate in its products and therefore its role will become more important.’

The year 2030 is a year that is buzzing around at the Forum as the turning point.
Where will we stand 15 years from now?


‘Maybe I'm just dreaming, but I think that at a certain point a dramatic change will take place.
One day, when people realise the importance of detailed bathymetry and start to hand over data, people may compete ot donate data and the amount of data becoming available will dramatically increase.
Many factors play a role in this: for example, internet and the smartphone, which will help us in a positive way.
When the truning point is reached, the situation will change drastically.
I expect this to happen to us.’

Crowdsourcing with Olex (SHOM study)

What about crowdsourced bathymetry as a major source for new data?

‘Crowdsourced bathymetry will become the major source of data for GEBCO, from any kind of ship sailing the world’s oceans.
I would like to remind you that the very first GEBCO relied largely on cable laying companies’ sounding data.
They were truly the crowdsourced bathymetry.’

 courtesy of M. Würtz and M. Rovere (eds.), IUCN

And do you dare to give an estimate of how much of the ocean floor will be mapped by 2030, in percentage terms?

‘Having a 100 percent coverage of bathymetry of the ocean is not that easy and simple.
It may not be impossible, but it is certainly very difficult.
In 10 years? I don't think so.
Can I replace 10 by 15 years or 20 years? Still hesitating...but 50 years, that maybe a yes.
But it depends on the size of the grid, in question, of course.
For example, bathymetry under ice cover needs dramatic development of surveying technology.
Otherwise 100 percent coverage will not be very easy.’

There are more than 12,000 hydrographers and oceanographers all over the globe reading Hydro International.
What would you like to tell them?


‘Share data! Keeping data to yourself is, in my view, a crime.
It should be shared.
Once everybody shares, 15%, the percentage of the ocean floor that has now been mapped, will easily become 40%.
I remember that I talked with a Russian guy who told me that a city called Obnisk, an academic city, but also a city where nuclear facilities were located, was not mapped correctly for intelligence reasons.
Once Google Maps became availabel, the correct details of this city became known to the world.
What I am saying is that what governments try to keep a secret, will no longer be secrets in the future.
And this goes for ocean depths as well.

There is no use in keeping data classified, because there is no way you can keep it secret.
Do you agree?


Indeed, and I would like to extend this especially to the Hydrographic Offices.
If you do not serve as a source of bathymetric information for more than just navigational charts, somebody else will do it for you.
If the Hydrographic Offices stick to nothing else than publishing nautical charts, that would be a disaster for the Hydrographic Offices and for the ocean community.
There are so many people who require shallow-water bathymetry, again for purposes of monitoring MPAs or predicting tsunamis.
The Hydrographic Offices have to serve them as well.

Do you have one last message to the industry in our field?

I would like to invite them all to become part of GEBCO.
They are stakeholders and we would like to include them, not just in this Forum but also in the future.
All stakeholders in bathymetric data should join our discussions.
In addition, I would like to extend my message of sharing data.
Data should not be kept to for just a few while it could be useful for the needs and safety of the public and in the end the fate of the ocean, the ecosystem, the earth.

Links :