Thursday, October 15, 2015

Brazil DHN update in the GeoGarage platform

1 nautical raster chart added + 4 charts updated

Marine food chains at risk of collapse, extensive study of world's oceans finds

By the end of this year 38% of the world’s reefs will have been affected.
About 5% will have died.
Photograph: XL Catlin Seaview Survey/Macrae/PA

From The Guardian by Oliver Milman

Important ecosystems could be massively damaged by 2050 unless greenhouse gas emissions and localized pollution is drastically reduced, researchers say

The food chains of the world’s oceans are at risk of collapse due to the release of greenhouse gases, overfishing and localized pollution, a stark new analysis shows.

A study of 632 published experiments of the world’s oceans, from tropical to arctic waters, spanning coral reefs and the open seas, found that climate change is whittling away the diversity and abundance of marine species.

 Thousands of sharks visit a sea mount - Blue Planet: A Natural History of the Oceans
In the Pacific, a tiny island 300 miles away from the shore hides a giant mountain beneath the waves that forms a home for thousands of planton feeding fish.
These fish attract tuna, and the tuna attract thousands of sharks.
Watch this video to learn more about this fascinating food chain,
and hear some weird but true facts about the visiting Hamerhead sharks

The paper, published in the Proceedings of the National Academy of Sciences, found there was “limited scope” for animals to deal with warming waters and acidification, with very few species escaping the negative impact of increasing carbon dioxide dissolution in the oceans.

The world’s oceans absorb about a third of all the carbon dioxide emitted by the burning of fossil fuels.
The ocean has warmed by about 1C since pre-industrial times, and the water increased to be 30% more acidic.

The acidification of the ocean, where the pH of water drops as it absorbs carbon dioxide, will make it hard for creatures such as coral, oysters and mussels to form the shells and structures that sustain them.
Meanwhile, warming waters are changing the behaviour and habitat range of fish.

The overarching analysis of these changes, led by the University of Adelaide, found that the amount of plankton will increase with warming water but this abundance of food will not translate to improved results higher up the food chain.
“There is more food for small herbivores, such as fish, sea snails and shrimps, but because the warming has driven up metabolism rates the growth rate of these animals is decreasing,” said associate professor Ivan Nagelkerken of Adelaide University. “
As there is less prey available, that means fewer opportunities for carnivores.
There’s a cascading effect up the food chain.
“Overall, we found there’s a decrease in species diversity and abundance irrespective of what ecosystem we are looking at. These are broad scale impacts, made worse when you combine the effect of warming with acidification.
“We are seeing an increase in hypoxia, which decreases the oxygen content in water, and also added stressors such as overfishing and direct pollution. These added pressures are taking away the opportunity for species to adapt to climate change.”

 As record ocean temperatures cause widespread coral bleaching across Hawaii, NOAA scientists confirm the same stressful conditions are expanding to the Caribbean and may last into the new year, prompting the declaration of the third global coral bleaching event ever on record.
Waters are warming in the Caribbean, threatening coral in Puerto Rico and the U.S. Virgin Islands, NOAA scientists said.
Coral bleaching began in the Florida Keys and South Florida in August, but now scientists expect bleaching conditions there to diminish.
This bleaching event, which began in the north Pacific in summer 2014 and expanded to the south Pacific and Indian oceans in 2015, is hitting U.S. coral reefs disproportionately hard.
NOAA estimates that by the end of 2015, almost 95 percent of U.S. coral reefs will have been exposed to ocean conditions that can cause corals to bleach.
The biggest risk right now is to the Hawaiian Islands, where bleaching is intensifying and is expected to continue for at least another month.
Areas at risk in the Caribbean in coming weeks include Haiti, the Dominican Republic and Puerto Rico, and from the U.S. Virgin Islands south into the Leeward and Windward islands.
The next concern is the further impact of the strong El NiƱo, which climate models indicates will cause bleaching in the Indian and southeastern Pacific Oceans after the new year.
This may cause bleaching to spread globally again in 2016.

The research adds to recent warnings over the state of the oceans, with the world experiencing the third global bleaching of coral reefs.
Since 2014, a massive underwater heatwave, driven by climate change, has caused corals to lose their brilliance and die in every ocean.
By the end of this year 38% of the world’s reefs will have been affected.
About 5% will have died.

 Coral reefs are suffering a severe underwater heatwave this year - resulting in the third global bleaching event seen in oceans around the world.

Coral reefs make up just 0.1% of the ocean’s floor but nurture 25% of the world’s marine species. There are concerns that ecosystems such as Australia’s Great Barrier Reef, which has lost half its coral cover over the past 30 years, could be massively diminished by 2050 unless greenhouse gas emissions are slashed and localized pollution is curbed.

Meanwhile, warming of the oceans is causing water to thermally expand, fueling sea level rises caused by melting land ice.
Research released in the US on Monday found that Antarctic ice is melting so fast that the whole continent could be at risk by 2100, with severe consequences for coastal communities.

Problems in the ocean’s food chains will be a direct concern for hundreds of millions of people who rely upon seafood for sustenance, medicines and income.
The loss of coral reefs could also worsen coastal erosion due to their role in protecting shorelines from storms and cyclones.

“These effects are happening now and will only be exacerbated in the next 50 to 100 years,” Nagelkerken said.
“We are already seeing strange things such as the invasion of tropical species into temperate waters off south-eastern Australia. But if we reduce additional stressors such as overfishing and pollution, we can give species a better chance to adapt to climate change.”



Wednesday, October 14, 2015

Map shows where Sea Level rise will drown American cities

Where the streets have no name.

From Wired by Nick Stockton

There’s a good chance that the most often-heard global warming joke in the US is some version of the following: [Point to an empty lot somewhere far from the ocean] “In 100 years, this is going to be beach front property!”
Not funny, but kind of true.

Rising tides are already lapping away at shorelines from Bellingham to Biscayne Bay.
And with atmospheric carbon dioxide levels steadily rising, many of the country’s coastal cities and towns will someday be under water.

That’s even if the December Paris climate talks lead to significant global emissions cuts.
A new map from Climate Central shows how the water will flow into hundreds of US cities under the best and worst global warming scenarios.
It uses data from an accompanying study, published today in the Proceedings of the National Academy of Sciences, that links CO2 to sea level rise to the topographic contours of the coastal US.

A lot of this inundation is already on the books.
Called locked in rise, it comes from energy banked in atmospheric CO2.
Carbon molecules will eventually release that energy as heat, which will raise the global mean temperature.
Seasons will cycle, years will pass, and weather patterns will fluctuate.
And after some time—could be decades, could be centuries—the atmosphere will settle its thermodynamic debt, and a bunch of ice will melt.

It’s not just the volume of added ice that makes the oceans rise.
The Antarctic and Greenland ice sheets are so massive that they exert gravitational pull on the ocean.
“So sea level is higher right next to those places because of that pull,” Ben Strauss, co-author author of the study, and climate scientist at Climate Central
(Disclosure: I was a Climate Central data visualization intern for a few months in 2013).
Warmer water is also less dense.
Higher and higher those waters will climb.

But how far depends on how much carbon humans continue to emit.
“For a long time I’ve wanted to be able to show a map that very clearly contrasts the future under high carbon emissions or low carbon emissions,” says Strauss.

 Developed in partnership with COMET Program/MetEd, "Geospatial Infrastructure for Coastal Communities" is aimed at community planners, emergency managers, and other coastal zone decision-makers.
This video will explain how using geospatial information already available through NOAA, combined with strategic local investments in infrastructure can provide communities with the data needed to confidently plan for future sea-level changes.

Not an easy task.
The research began by linking a historical data set showing how temperature affects peak sea level rise with another data set showing the relationship between carbon emissions and temperature.
After millions of computer experiments, they had some usable ratios of between carbon emissions to sea level rise.
“One of the most astonishing things to me was finding that burning one gallon of gasoline translates to adding 400 gallons of water volume to the ocean in the long run,” he says.

Coastal topography maps accurate down to a few inches showed where the water would rise.
“Local, state, and federal agencies have been flying lidar missions over coastal areas for 15 years now,” says Strauss.
Finally they added the 2010 census, and used the historic high tide lines to measure which pixels (each representing about 15 feet per side on the ground) would be drowned in the inundated future.

Or at least, some version of the future.
They projected their data using four future emissions scenarios, ranging from extreme carbon cuts to emissions-heavy business as usual.

Here’s the result (You can pan around to other cities):


“They’ve effectively tied human behavior to different outcomes, quantified by the inundation of various coastal population centers,” says Steve Nerem, a sea level rise expert at the University of Colorado.

For example, when the global atmospheric CO2 level reaches 930 gigatons, Boston will be due for about 9 feet of sea level rise.
That’s enough water to cover 25 percent of the city during high tide.
In the extreme cuts scenario, atmospheric CO2 never reaches that level.
Under business as usual fossil emissions however, a quarter of Boston is locked into a future under water by 2045.

Existential nihilists however, can relax: Nobody’s doomed yet.
Future Americans are going to deal with the flooded basements and foregone civilization.
“Those generations could know lower Manhattan as a place to visit, or as a place to go diving for ruins,” says Strauss.

 Coastal communities face resiliency challenges
with the combined effects of storm surge and sea level rise.
(Credit: U.S. Department of Transportation)

The study, in other words, isn’t about how much see level rise happens this century, but whether this century’s emissions bank enough carbon for total ice melt down—or some less drastic version.
“Our analysis really looks at a 2000 year envelope,” says Strauss.

Why the long horizon?
“It turns out it’s a lot easier to project how much the sea level will rise than how quickly the sea level will rise,” says Strauss.
Blame geology for the uncertainty.
“We do not know much about the bedrock on which the ice lies,” says Anders Levermann, study co-author and climate scientist at the Potsdam Institute for Climate Impact Research in Germany.
Under the ice, Greenland and Antarctica are uncharted territories.
In order to calculate the rate at which those massive ice sheets slough off, Levermann says he would need to know more about the texture of the underlying rock.

 The Filchner-Ronne ice shelf is the second largest ice shelf in Antarctica.
Photo: NASA Visible Earth

Linking CO2 to sea level rise isn’t exactly novel, but it’s not often you get to look at how the emissions decisions our species make today will affect the seaside legacy left for future generations. If you’ll pardon the pun, this map really brings climate change home.

Links :
  • Boston Globe : The very weird physics of sea-level changes
  • Washington Post : This is how rising seas will reshape the face of the United States
  • Reuters : Rising seas to displace millions of Americans if warming unchecked
  • New Scientist : Even drastic emissions cuts can’t save New Orleans and Miami
  • NOAA : NOAA awards $1.1 million to support coastal communities facing changing sea levels and coastal flooding

Tuesday, October 13, 2015

New Zealand Linz layer update in the GeoGarage platform

 8 nautical charts updated

The data-collecting company that wants to give Earth a "Nervous System"

Planet OS - Cloud Platform for Industrial Sensor Networks
Planet OS is a cloud-based big data architecture for search, analysis & discovery for real-world sensor networks in the oceans and atmosphere, on land and in space.
Planet OS’s goal is to index the public web for geospatial sensor datasets and become the first place every data professional or executive will use to look for sensor data intelligence; facilitate data exchange between parties, and allow developers to build domain-specific big data applications for enterprise workflows.
Planet OS biggest deployment is Marinexplore.org, the biggest free service on the web for public ocean data with over 33 organizations, 7,500+ users and 40,000 data streams updated daily.

From Gizmodo by Bryan Lufkin

Data.
It’s a powerful tool that helps us battle climate change or keep companies sustainable.
But there’s so much data, and it’s hard to corral, index, and understand.

Transform your sensor data into valuable insight

However, one company wants to give Earth a “planetary nervous system” to help out companies and policy makers make faster, more informed decisions that’ll be beneficial for the blue marble we call home.
It’s a cloud-based service called Planet OS, and its goal is to index the world.
See, humans gather a lot of great data, with sensors like buoys, satellites, drones, robots, or research ships.
This data includes everything from seismic activity to weather patterns.
A lot of times, this information is delivered to engineers and scientists via external hard drives, FTP, or email, and can be duplicated and hard to gather and parse.

 Planet OS is a Big Data platform designed for geospatial data
drawn from atmospheric, land-based, oceanic and remote sensors

But this Bay Area-based company gives execs and data scientists an interface that visualizes and analyzes all relevant, real-time, baseline environmental data (both commercial and public) in one place.
It’s great, when compared to the alternatives: Creating a custom, in-house software for companies to gather data themselves, or buy a database that goes out-of-date quickly once new generations of sensors are produced.


The company’s users include names like Chevon, BP, and Premier Oil.
They help them corral data, find broken sensors in real time, and more, providing environmental data 80% faster.
 

The company is one of 14 innovators the United Nations picked to help address the 17 Sustainable Development Goals by 2030.
Planet OS presented to 250 senior policy makers and tech execs from around the world at United Nations Headquarters in New York last month.

Planet OS is California-based but was founded by a team of Estonian engineers.
(When I interviewed Megan Smith, CTO of the United States, she mentioned that America has a lot to learn from Estonia, a country known for its “e-government” that allows citizens to instantly pay taxes, vote, fetch medical prescriptions through a single website.)

“Imagine all planet Earth data interconnected and available to the creativity of the best minds of our time, from researchers to software developers,” Planet OS said in a press release announcing its UN presentation.
The goal is to help encourage the planet’s big wigs make better decisions in agriculture, energy production, or manufacturing, since they’ll have easier access to easier-to-understand data.
Data’s powerful, but only if you know what to do with it.

Links :