Tuesday, August 25, 2015

Could the smell of the sea help cool a warming planet?

Tiny bubbles get lofted into the air by the churn of the sea

From BBC by Matt McGrath

Ah, the summertime sizzle of a shell-strewn beach, the bracing odour of the briny sea.
There's nothing quite like it really.

If you happen to be on a beautiful beach, do take a good, deep, invigorating sniff!

What does it remind you of?
Amid the saltiness, a hint of sulphur perhaps?
A slight edge of boiled cabbage? Or something even more unpleasant?
Well, maybe that's just me...

Seaside odours are generally composed of dimethyl sulfide, a pongy gas produced by bacteria feasting on phytoplankton.
In the atmosphere, it is changed chemically to sulphate, which in turn becomes the seeds of clouds.
Solid organic matter from large collections of phytoplankton blooms can also help with cloud formation.

This blooming ocean can give rise to a specky scum, from which tiny bubbles get lofted into the air by the churn of the sea.
Water vapour condenses around them, tiny droplets form and the fluffy billows of the sky emerge.

Gobsmacked

So what does this ocean-coloured scene have to do with a warming planet?
Well, researchers say that the type of clouds produced from sea gas and plankton particles, especially in the Southern Ocean, are not your common or garden cumulus.

Scientists were surprised to discover that clouds in the Southern Ocean
were highly reflective in summer

Clouds reflect sunlight back into space depending on the size of the droplets and the amount of liquid suspended in them.
The more liquid that is suspended in the cloud, the brighter and more reflective they are - swotty philosophers of the skies!
The experts have long understood that in winter, when seas are stormy and the spray is flying, there will be more of these types of droplets and thus more sun bounced back into space.
In the balmy, calm of summer at sea they expected the clouds to be far less reflective.
They were astonished to discover that, in the Southern Ocean, this was not the case at all.
In fact they concluded that the plankton particle effect was strongest in the warmer months - on average they found that ocean life doubled the number of droplets in summer.
"The amount of sunlight that's reflected by those clouds in this region is about 125 watts per metre squared," said co-author Dr Susannah Burrows, from the US Department of Energy's Pacific Northwest National Laboratory.
"What we're finding is evidence for a change in that reflectivity of 10 watts per metre squared, that would be attributed to the phytoplankton - so about 8% of the reflection of sunlight on those clouds."
"It is quite a bit!" she said.

Brightening the clouds

So can this new understanding of the role of sea smells and clouds make a difference to global warming?
Well, yes, say the researchers but not necessarily in the ways you might think.
The scientists are excited about the findings because for the first time it gives them a clue about the total number of aerosols that are up in the air over the Southern Ocean.
But could this new understanding give a boost to ideas about geo-engineering our way out of warming hell?

Scientists have been studying the ability of clouds to reflect sunlight back into space

In recent years a number of researchers have suggested that brightening the clouds could be a low-impact way of cooling the planet.
Does this Southern Ocean research make this a more feasible prospect?
"In principle it is possible to strongly modify and brighten marine clouds by injecting particles into the marine atmosphere," says Dr Burrows.
"But I think whether or not that's a good idea is really a political question that needs to be discussed within society."
Something to mull over while lying on the beach with the sea air in your nostrils.

Monday, August 24, 2015

Walter Munk, ‘Einstein of the Oceans,’ at 97


 This 1994 Emmy award winning program traces the work and adventurous life of renowned oceanographer Walter Munk, from his explorations into the mysteries of waves to monitoring global warming.

From NYTimes by Kate Galbraith

In 1942, with World War II in full swing, a young military scientist learned of the Allies’ plans to invade northwestern Africa by sea to dislodge the nearby Axis forces.

The scientist, Walter Munk, who was in his mid-20s, hastily did some research and found that waves in the region were often too high for the boats carrying troops to reach the beaches safely.
Disaster could loom.
He mentioned it to his commanding officer, but was brushed off.
“ ‘They must have thought about that,’ ” Dr. Munk, now 97, recalled being told.
But the young scientist persisted, calling in his mentor at the Scripps Institution of Oceanography near San Diego to help.

They devised a way to calculate the waves the boats could expect to face.
Their work helped the boats land in a window of relative calm, and the science of wave prediction took off, becoming part of the planning for the D-Day landings in 1944.

Such feats explain why Dr. Munk is sometimes called the “Einstein of the oceans.”
Longtime colleagues describe him as a courtly man of boundless curiosity, with an uncanny ability to search out important problems at just the right time.
In addition to wartime wave forecasting, Dr. Munk has done pioneering research in ocean sound transmission, deep-sea tides and even climate change, though some of his work in the field has been controversial.

Even today, well into his eighth decade of scientific work, his desk holds books and papers thick with geophysics formulas, and he continues to tackle projects ranging from using underwater sound signals to measure warming ocean temperatures to how winds cause the Gulf Stream.
Had he more time, Dr. Munk said, he would work on geoengineering.
“He has a real knack for picking problems that are ripe to really get new fields started,” said Peter Worcester, a research oceanographer at Scripps who has worked with Dr. Munk on a number of issues, including climate change.

 Photos and video clips spanning the career of Scripps oceanographer Walter Munk.
Video courtesy of UC San Diego Creative Services and Publications. 
Certain images used courtesy of Ansel Adams.

Born in 1917 to a banking family of Jewish heritage, Dr. Munk grew up in Vienna, with frequent trips to the Austrian countryside.
His father served occasionally as a chauffeur to Franz Joseph, the Austrian emperor, during World War I. “He had the only Rolls-Royce in Vienna,” Dr. Munk recalled.
His parents later divorced, and he was closer to his mother, who sent him to a school in upstate New York in 1932.
After taking night classes at Columbia University, he decided to leave the family business of banking and gained admission to the California Institute of Technology, where he studied applied physics. While spending the summer of 1939 near a girlfriend in the oceanside town of La Jolla, outside San Diego, he landed a job with Scripps (now part of the University of California, San Diego), where he has worked most of his career.

Colleagues say Dr. Munk took advantage of emerging computer analysis tools to help turn his direct observations of the ocean into sophisticated research projects.
But Dr. Munk says he is concerned that today’s young oceanographers rely too much on computers, and fail to ask fundamental questions or take enough risks.
“Computers are a lot cheaper than boats, and a lot more comfortable,” he said.
“And I’m a little worried about so many people doing computer experiments and losing their ability, the American leadership, in measurements at sea.”

His seafaring work includes some notable moments in world history.
Days before nuclear tests were performed at Bikini Atoll in 1946, Dr. Munk and a colleague dropped dye in the water to assess how quickly radioactive materials would flush out of the lagoon.
Near the test site of the far more powerful hydrogen bomb on Eniwetok Atoll in 1952, he monitored the ocean for a potential tsunami.
It didn’t happen, though Dr. Munk and his crew were doused by radioactive rain and had to toss their clothes overboard.

The high point of his career, as Dr. Munk calls it, came in 1991, when he traveled to Heard Island, a remote spot in the Southern Indian Ocean, to test long-range sound signals in the ocean.
Dr. Munk had worked extensively with colleagues on ocean acoustics, a useful field for detecting or concealing submarines.
The goal of the Heard Island experiment was to determine whether a sound generated from the South Indian Ocean could be heard in other corners of the world.
The speed at which the sound signals traveled could provide useful data on warming ocean temperatures, Dr. Munk reasoned, because the sound would travel slightly faster as the ocean warmed.

Hours before the experiment was to begin, Dr. Munk was awakened by a call from Bermuda.
From thousands of miles away, the listening post had already heard the sound before the experiment had begun.
As it turned out, the Bermuda post had heard the brief sound check that technicians had made while preparing for the full test.
“And that was the best news that I’ve ever heard,” Dr. Munk recalled.
The Heard Island broadcasts became known as the “sound heard around the world.”

But Dr. Munk’s zeal for using ocean sounds to measure climate change created trouble a few years later.
In 1994, as part of a Scripps project, he sought to install a sound transmitter in the Monterey Bay National Marine Sanctuary off the coast of California to help measure ocean temperatures changing over time. (Another one was installed off Hawaii.)
But environmentalists feared that the broadcasts would hurt whales, which navigate and find food by means of their own sonar, and feed in the sanctuary.
The Natural Resources Defense Council asked for and received a public hearing in an effort to halt the Monterey Bay project.
“What happened here was a head-on collision between Walter Munk and whales. And that was the perception,” recalled Joel Reynolds, a senior lawyer for the defense council.
Dr. Munk and the military, which was largely funding the study, did not anticipate the level of public concern that the acoustics project would generate, he said.
After negotiations with the environmentalists, Dr. Munk and Scripps agreed to move the listening post farther off the California coast and prioritize a study of the sounds’ effects on marine mammals.
 
The clash over ocean acoustics, recounted in Joshua Horwitz’s 2014 book “War of the Whales,” illustrated a “chasm” between physical oceanographers and marine biologists, said Mr. Reynolds, who praised Dr. Munk as “one of the extraordinary oceanographers in history.”

Dr. Munk still yearns to use sound to measure the warming ocean.
“I am convinced that you can do good underwater acoustics without hurting the whales, with some sensible precautions,” he said.
For example, during Naval exercises, scientists must make sure there are no pods of whales nearby, and only gradually increase the sound.
He understood the concerns about whales, he said, and all sides “have to want to work together.”

His long career has also given Dr. Munk perspective on his earliest work on waves.
After their success in North Africa, he and his colleagues at Scripps opened a wave-prediction school for military officers, and some of the graduates went on to help forecast waves off Normandy ahead of the 1944 D-Day landings.

The curriculum changed constantly, Dr. Munk recalled, as the scientists learned more about the science of waves on the fly, essentially inventing the field.
“When we then look backwards, the fact that the landings took place during good weather was mostly luck, to some small extent skill,” Dr. Munk said of North Africa.

Nowadays, as he forges ahead on wind, waves and other projects, he occasionally forgets the times of meetings and gets around with the aid of a walker.
But he remains a frequent presence in Scripps, walking the halls of a building that now bears his name.
The secret to his longevity?
“I like my work and I like my life, and I enjoy doing it,” he said.

Sunday, August 23, 2015

Mapping the deep ocean: Geoscience Australia and the search for MH370


A short film describing the processes of bathymetric mapping and side scan sonar, used to gather data within the search area for missing Malaysia Airlines flight MH370.

About this video: Geoscience Australia has been applying specialist marine geoscience knowledge and capability to assist in the search for missing Malaysia Airlines flight MH370.
With existing experience and capabilities supporting management of Australia’s vast marine jurisdiction, Geoscience Australia is providing ongoing expert advice to the international search team, led by the Joint Agency Coordination Centre and the Australian Transport Safety Bureau.
Specialist advice regarding bathymetry, the study and mapping of sea floor topography, has proved critical in understanding the environment in which the search is operating.
This video describes the key processes of bathymetric mapping and side scan sonar, which are used to gather data within the search area for missing Malaysia Airlines flight MH370.

  Sonar images could reveal MH370 in Indian Ocean

New colors in the French charts from SHOM

Example of detailed chart updated for SEM-REV project
with new land color

Since the beginning of 2015, the geoTIFF raster files which are the base material provided by SHOM and processed in the GeoGarage platform have a new color for land areas (new color previously used for the harbor drawings in the Nautical instructions) :


Note : in 2014, the printed L paper maps already displayed this color; but the flat paper maps adopt the same color at the beginning of 2015.

For memory, some old views of the SHOM layer in ancient versions :

GeoGarage with ancient color (flesh-colored) SHOM maps

The official viewer on the data.shom.fr still displays the ancient color (flesh-colored)
indicating that SHOM didn't update the displayed charts

Saturday, August 22, 2015

Speechless - The polar realm


A transcendent cinematic experience.'

Filmed over ten years throughout the Earth’s polar regions (filmed over 10-years in Antarctica, South Georgia, Falklands, New Zealand subantarctic, Svalbard, Greenland, Franz Josef Land, Canada and Iceland) by nature photographer Richard Sidey, Speechless – The Polar Realm is an award-winning non-verbal visual meditation of light, life, loss and wonder at the ends of the globe.

In search of an individual viewing experience aided by the absence of spoken narrative, this cinematic voyages is guided through both powerful imagery of the natural world and a poignant, original score from composer and sound artist, Miriama Young.