Wednesday, December 17, 2014

MH370: Bathymetric survey


Geoscience Australia is providing extensive advice, expertise and support to the Australian Transport Safety Bureau (ATSB).
The ATSB is leading a seabed mapping and underwater search for missing Malaysia Airlines flight 370 in the southern Indian Ocean.
Bathymetry is the study and mapping of the sea floor.
It involves obtaining measurements of the depth of the ocean and is equivalent to mapping on land. Before the underwater search for MH370 could begin, it was necessary to accurately map the sea floor to ensure that the search is undertaken safely and effectively.
Bathymetry survey vessels spent months at sea, scanning the sea floor with multibeam sonar to gather detailed, high-resolution data.
The data has revealed many seabed features for the first time.
This computer-animated ‘flythrough’ shows a visualisation of some of the sea floor terrain in the search area.


Geoscience Australia is applying specialist knowledge and capability in the search for missing flight MH370.
This expertise proved critical in understanding the environment in which the search is operating.

The Joint Agency Coordination Centre (JACC) is the lead agency in the search for missing Malaysia Airlines Flight MH370, coordinating all Australian Government assistance and is responsible for whole-of-government information, including keeping the families of those onboard and the general public, informed of the progress of the search.
The Australian Transport Safety Bureau (ATSB) is Australia's national transport safety investigator and is leading the search operations for MH370.
Geoscience Australia provides advice, expertise and support to the ATSB in sea floor mapping (bathymetric survey) and the underwater search.
The search for MH370 includes a bathymetric survey, providing a detailed map of the sea floor topography of the search area; and an underwater search using scanning equipment or towed submersible vehicles.
The information gained in the bathymetric survey is used to build a map of the sea floor in the search area, aiding navigation during the underwater search.

 The image on the left shows data at around 3400-metre resolution (data acquired predominantly by satellite altimetry), while the image on the right shows data with a combination of 250-metre and 50-metre resolutions (data acquired by bathymetric surveys from a vessel).
The higher resolution data on the right shows underwater features much more clearly.
This figure is for illustrative purposes only and does not show data from the search area.

The bathymetric survey was conducted from May to October 2014, collecting data over 150,000 square kilometres in the search area and producing high resolution maps of the sea floor to safely conduct the underwater search.
Survey vessels undertaking the bathymetric survey used a multibeam sonar mounted on the hull to obtain measurements and produce a map charting the water depth and hardness of the sea floor.
High resolution multibeam data acquisition is time-consuming.
It is a little like mowing grass, where bathymetry is mapped line by line.
In general, the world's deep oceans have had little exploration.
Previous maps of the sea floor in the search area were derived from satellites and only indicated the depth of the ocean at a coarse resolution, not showing the shape of the sea floor in enough detail for safe navigation of underwater vehicles.
These coarse maps provide data at a low resolution of approximately 1500 metres (per pixel), while the recent multibeam bathymetric survey collected data at 50 to 150 metres (per pixel).
This newly acquired data is some of the first high resolution data available for these areas.


Sea floor in MH370 search area

Very little is known about the sea floor in the MH370 search area, as few marine surveys have taken place there.
What was known, however, was that the search area encompasses the seabed on and around Broken Ridge, an extensive linear, mountainous sea floor structure that once formed the margin between two geological plates.
These plates evolved and spread apart between 20 and 100 million years ago, under similar processes found today at spreading plate margins (such as the Mid-Atlantic Ridge).
The sea floor around Broken Ridge still retains many of the large geological structures typical of spreading plate margins where volcanism and tectonic movements produce volcanoes (now extinct), high rugged ridges and deep trenches.
The high resolution bathymetry data collected in the search for MH370 has revealed many finer-scale seabed features for the first time that were not visible in the previous low resolution, satellite-derived bathymetry data.
It has also revealed regions of harder and softer sea floor composition (sediment versus rock).
This information has been useful in identifying and discriminating certain features, but also in providing a guide on the complexity of the sea floor for the underwater search.
The following 3D models present some of the features.

Visualisation of Sea Floor Terrain

Before the underwater search for MH370 could begin, it was necessary to accurately map the sea floor to ensure that the search is undertaken safely and effectively.
Bathymetry survey vessels spent months at sea, scanning the sea floor with multibeam sonar to gather detailed, high-resolution data.
The data has revealed many seabed features for the first time.
This computer-animated `flythrough' (above) shows a visualisation of some of the sea floor terrain in the search area.

 3D models of sea floor terrain gallery

Three-dimensional models of the sea floor terrain
 These three-dimensional models of the sea floor terrain have been developed from high resolution (90 metre grid) bathymetric data from the survey in the southern part of the Indian Ocean.
These models show newly discovered sea floor features including:
  • seamounts (remnant submarine volcanoes), up to 1400 metres high and often forming a semi-linear chain
  • ridges (semi-parallel) up to 300 meters high, and
  • depressions up to 1400 metres deep (compared to the surrounding seafloor depths) and often perpendicular to the smaller semi-parallel ridges.
The identification of these features will assist in navigation during the underwater search.

Scientific understanding

The data acquired as part of the bathymetric survey has been collected for the sole purpose of finding the missing plane and to bring closure to the families of those on-board.
However, as it is some of the first high resolution data available in these areas, it is of great interest to the scientific community and will be released to the public by Geoscience Australia in due course.
For scientists, a greater understanding of deep ocean bathymetry is useful for a range of purposes, including geological interpretation to better understand plate tectonic history; as a baseline product in the creation of hydrodynamic models to gain knowledge on ocean currents and connectivity; the identification of sea floor features; and with the depth of oceans playing a major role in defining the habitat for flora and fauna - to locate areas where unique biological communities may exist.

Tuesday, December 16, 2014

Rolls-Royce sets sail for robotic shipping with virtual bridge concept

Rolls-Royce created this concept under FIMECC (Finnish Metals and Engineering Competence Cluster) user experience and usability program, UXUS.
This future bridge operation experience concept (oX) for platform support vessels is envisioned together with VTT Technical Research Centre of Finland in 2012-2014.
(video for cargo vessels)

From GizMag by David Szondy

Rolls-Royce, VTT Technical Research Centre of Finland, and Aalto University are expanding on their ideas for a virtual bridge that could soon lead to a future where the line between manned and robotic ships becomes completely blurred. Combining automated ship systems and constant high-data level communications, it's part of what Rolls-Royce see as the "next major transition for the shipping industry."



Today, there's more shipping than ever.
Ships are becoming more complex, requiring large amounts of data streaming within and without the hull, regulations are growing by the day, fuel costs increase, and environmental pressures become more acute.
At the same time, skilled crews willing to spend weeks at sea are becoming harder to find.
According to Rolls-Royce, this, combined with the requirements of the latest developments in propulsion, navigation, and other on-board systems, will require complex interactive data and control systems that could one day lead to autonomous ships that don't require crews
The concept, Ship Intelligence, is based on a new bridge called the Future Operator Experience Concept or "oX."
This turns bridge positions into smart work stations and the bridge itself into an augmented reality control center.
This week, Rolls-Royce unveiled its latest version of the concept, which it says could become a reality in ten years.


The difference between the oX and a bridge of today is more than the science fictiony consoles and futuristic chairs.
This is obvious the moment one of the crew walks on the bridge, where sensors identify them, call up their individual duties and specifications, and reconfigure their stations accordingly to suit the the task at hand and the ergonomics of the user.
The windows of the bridge are actually augmented reality displays that overlay information and enhance visibility of the ship's surroundings by means of an array of cameras and other sensors.
This display can show navigation tracks and hazards, provide warnings and data about other ships in the area, and highlight ice, shoals, and other things that might not otherwise be visible – including the ability to make the ship "invisible" and eliminate blind spots or show up deckhands who might otherwise be hidden behind equipment.
Based on a study of user experiences and preferences, the oX system is designed to be used on a wide array of ships, from giant cargo container ships to platform support vessels.
According to Rolls-Royce, oX is more than a glorified autopilot or data display device.
It's designed to operate in concert with fleets of vessels and other facilities coordinating with shore control centers and exchanging massive amounts of data.


For example, in platform support operations, oX allows the shore control center to provide a detailed operations plan for the captain, oversees the vessel's approach to the platform, coordinates and maintains a robotic ship on standby in the event of trouble, compensates for equipment malfunctions, and can even autonomously move cargo containers from the loading area on deck to their stowage points.
At any point, control of operations can shift between the captain, the autonomous system, and the control center as required.
Rolls-Royce sees oX and similar systems as key technologies that will determine the shape of future ships as they become more automated, connected, and possibly autonomous over the next two decades. Properly used, the company regards these as a way of reducing costs, making ships more energy efficient, safer, and environmentally friendly.
"With the demands of environmental legislation and rising operating costs, ships are going to become more complex" says Mikael Makinen, Rolls-Royce, President - Marine.
"Add to that the fact that skilled crews are already in short supply, then we see a distinct gap opening up between the complexity of ships and the competency of the people who will crew them. That will cause real problems for the industry, and we believe it is Ship Intelligence, that will fill that gap."


Part of the oX technology can be found in Rolls-Royce's Unified bridge, which was installed on the vessel Stril Luna to provide an ergonomic bridge environment while coordinating onboard equipment operations.
In addition, Rolls-Royce says that remote monitoring is already used by the company with control centers in Alesund, Norway, and Rauma, Finland to monitor onboard equipment, such as engines and cargo handling, as well as ships around the world in real time.
In addition to its new version of the oX, Rolls-Royce also released a series of new images of possible robotic ships of the future, including a natural gas carrier that has a curved whaleback without a hint of a deck, a cargo container ship that's all cargo and no superstructure, and a bulk carrier with a flat deck given over entirely to loading hatches.
"Many of the technology building blocks that will control the ships of the future are already available today, but there is still work to be done to develop marine solutions from them," says Oskar Levander, Rolls-Royce, Vice President - Innovation - Marine.
"We are investing in ship intelligence, which will be a major driver of the next transition era of shipping. Much in the way that sail gave way to steam powered ships, and coal gave way to oil, we will see increasingly sophisticated ships, highly automated and perhaps even unmanned remote controlled, plying the seas within the next two decades."

Links :

Monday, December 15, 2014

England and the North-East Passage

 Robert Thorne, Orbis Universalis Descriptio. London, 1582. British Library C.23.b.35
Robert Thorne, Orbis Universalis Descriptio. London, 1582. British Library C.23.b.35. - See more at: http://britishlibrary.typepad.co.uk/magnificentmaps/index.html#sthash.vJEyQGQs.dpuf

From British Library

This gripping guest blog, in conjunction with our current Arctic exhibition, has been generously provided by historian James Evans.
James is author of 'Merchant Adventurers, an account of the Tudor search for a north-east passage'.

There ‘remained only one way to discover’, the Bristol merchant Robert Thorne told fellow Englishmen early in the 16th century, ‘which is into the north’.

Officials and merchants had seen the wealth amassed in Spain and Portugal by the discovery of new routes across the ocean.
But while the Pope tried to reserve all non-Christian lands to the Iberian nations, the English insisted this could apply only to territories reached by sailing south.

To the unexplored north England claimed a God-given right.
After all, John Cabot had discovered North America for the English in the 15th century, soon after Columbus’ epochal voyage.
And many thought there must be a passage here to ‘Cathay’, as China was then known, to match that in the south – because land on the earth was bound to be balanced.
How else would it spin straight?

Thorne wrote a tract, and drew a map, to illustrate his ideas.
He argued the English could sail due north, across the Pole, then descend towards undiscovered lands in the Pacific.
He admitted that many considered this impossible, the sea in the far north being ‘all ice’, the cold ‘so great that none can suffer it’.
But others believed ice formed only near land, while open ocean, across the top of the world, would remain clear.

Thorne tried to organise a voyage to test the idea, but died before he could. Not until Henry VIII had died too did power pass to men who truly believed in the value of exploration.
Under Edward VI, Cabot’s son, Sebastian, was lured back from Spain – and it was he who oversaw, in 1553, a major English attempt to find a northern passage.

Which way would they go?
North-west?
North-east?
Or directly north?
The watching Spanish ambassador fretted, rightly, that England was ‘seeking the road to the Indies’.
But he didn’t know whether the north could offer one.
No one did.
The lack of knowledge about this part of the world is shown on a map made for Henry VIII by Jean Rotz, on which huge empty spaces reveal the ignorance which existed concerning the north parts of the world.

 Jean Rotz, [Double hemisphere world map], from A Boke of Idrography, London, 1545.
British Library Royal MS 20 E IX

The 1553 crews went north-east, hoping a passage this way would be an ‘easy matter’. But of course it wasn’t.
The world was in the grip of what has become known as the ‘Little Ice Age’, and ice, to the north, was more extensive than it is now.
It was an extraordinary venture, which began trade with Russia via the White Sea – a region carefully charted by William Borough, who sailed then, as a teenager – and it set an important example.
But it failed to find a northern passage.

The ship belonging to the expedition captain, Sir Hugh Willoughby, became hopelessly lost.
The land ‘lay not’, he wrote in frustration, ‘as the globe made mention’.
His men tried to see out the winter.
His log, in the British Library today, records their desperate final weeks, locked in what it describes as a ‘haven of death’.

Sir Hugh Willoughby, [Extract from a journal of a journey to Cathay, c. 1554],
British Library Cotton MS Otho E VIII

The company set up then in England, whose monopoly extended across the north, continued to look north-east.
Further attempts were made by Stephen Borough (William’s older brother), and later by Arthur Pet and Charles Jackman.
But the landmass pushed them further north, as they moved east, and the ice proved impenetrable.

Attention, in England, switched to the north-west, where Martin Frobisher thought discovery ‘the only thing of the World’ left undone to make a man rich and famous.
 
 Abraham Ortelius, 'Septentrionalium Regionem Descrip',
from Theatrum Orbis Terrarum, Antwerp, 1572.
 
The map-maker Abraham Ortelius produced the first Atlas in 1570 – the Theatrum Orbis Terrarum – and his page on the Arctic north showed clear passages to both north-west and north-east.
 
The British Library's free exhibition Lines in the Ice: Seeking the Northwest Passage.
 
This gripping guest blog, in conjunction with our current Arctic exhibition, has been generously provided by historian James Evans. James is author of 'Merchant Adventurers, an account of the Tudor search for a north-east passage'.
There ‘remained only one way to discover’, the Bristol merchant Robert Thorne told fellow Englishmen early in the 16th century, ‘which is into the north’.
Officials and merchants had seen the wealth amassed in Spain and Portugal by the discovery of new routes across the ocean. But while the Pope tried to reserve all non-Christian lands to the Iberian nations, the English insisted this could apply only to territories reached by sailing south.
To the unexplored north England claimed a God-given right. After all, John Cabot had discovered North America for the English in the 15th century, soon after Columbus’ epochal voyage. And many thought there must be a passage here to ‘Cathay’, as China was then known, to match that in the south – because land on the earth was bound to be balanced. How else would it spin straight?
- See more at: http://britishlibrary.typepad.co.uk/magnificentmaps/2014/12/england-and-the-north-east-passage.html#sthash.faeQlETG.dpuf
This gripping guest blog, in conjunction with our current Arctic exhibition, has been generously provided by historian James Evans. James is author of 'Merchant Adventurers, an account of the Tudor search for a north-east passage'.
There ‘remained only one way to discover’, the Bristol merchant Robert Thorne told fellow Englishmen early in the 16th century, ‘which is into the north’.
Officials and merchants had seen the wealth amassed in Spain and Portugal by the discovery of new routes across the ocean. But while the Pope tried to reserve all non-Christian lands to the Iberian nations, the English insisted this could apply only to territories reached by sailing south.
To the unexplored north England claimed a God-given right. After all, John Cabot had discovered North America for the English in the 15th century, soon after Columbus’ epochal voyage. And many thought there must be a passage here to ‘Cathay’, as China was then known, to match that in the south – because land on the earth was bound to be balanced. How else would it spin straight?
- See more at: http://britishlibrary.typepad.co.uk/magnificentmaps/index.html#sthash.uJFqb7y6.dpuf
This gripping guest blog, in conjunction with our current Arctic exhibition, has been generously provided by historian James Evans. James is author of 'Merchant Adventurers, an account of the Tudor search for a north-east passage'.
There ‘remained only one way to discover’, the Bristol merchant Robert Thorne told fellow Englishmen early in the 16th century, ‘which is into the north’.
Officials and merchants had seen the wealth amassed in Spain and Portugal by the discovery of new routes across the ocean. But while the Pope tried to reserve all non-Christian lands to the Iberian nations, the English insisted this could apply only to territories reached by sailing south.
To the unexplored north England claimed a God-given right. After all, John Cabot had discovered North America for the English in the 15th century, soon after Columbus’ epochal voyage. And many thought there must be a passage here to ‘Cathay’, as China was then known, to match that in the south – because land on the earth was bound to be balanced. How else would it spin straight?
- See more at: http://britishlibrary.typepad.co.uk/magnificentmaps/index.html#sthash.uJFqb7y6.dpuf
This gripping guest blog, in conjunction with our current Arctic exhibition, has been generously provided by historian James Evans. James is author of 'Merchant Adventurers, an account of the Tudor search for a north-east passage'.
There ‘remained only one way to discover’, the Bristol merchant Robert Thorne told fellow Englishmen early in the 16th century, ‘which is into the north’.
Officials and merchants had seen the wealth amassed in Spain and Portugal by the discovery of new routes across the ocean. But while the Pope tried to reserve all non-Christian lands to the Iberian nations, the English insisted this could apply only to territories reached by sailing south.
To the unexplored north England claimed a God-given right. After all, John Cabot had discovered North America for the English in the 15th century, soon after Columbus’ epochal voyage. And many thought there must be a passage here to ‘Cathay’, as China was then known, to match that in the south – because land on the earth was bound to be balanced. How else would it spin straight?
- See more at: http://britishlibrary.typepad.co.uk/magnificentmaps/index.html#sthash.uJFqb7y6.dpuf
This gripping guest blog, in conjunction with our current Arctic exhibition, has been generously provided by historian James Evans. James is author of 'Merchant Adventurers, an account of the Tudor search for a north-east passage'.
There ‘remained only one way to discover’, the Bristol merchant Robert Thorne told fellow Englishmen early in the 16th century, ‘which is into the north’.
Officials and merchants had seen the wealth amassed in Spain and Portugal by the discovery of new routes across the ocean. But while the Pope tried to reserve all non-Christian lands to the Iberian nations, the English insisted this could apply only to territories reached by sailing south.
To the unexplored north England claimed a God-given right. After all, John Cabot had discovered North America for the English in the 15th century, soon after Columbus’ epochal voyage. And many thought there must be a passage here to ‘Cathay’, as China was then known, to match that in the south – because land on the earth was bound to be balanced. How else would it spin straight?
- See more at: http://britishlibrary.typepad.co.uk/magnificentmaps/index.html#sthash.uJFqb7y6.dpuf

Sunday, December 14, 2014

Canada CHS update in the Marine GeoGarage

As our public viewer is not yet available
(currently under construction, upgrading to a new online viewer as Google Maps v2 is officially no more supported),
this info is primarily intended to our B2B customers which use our nautical charts layers
in their own webmapping applications through our GeoGarage API

CHS raster charts coverage

29 charts have been updated & 3 new charts have been added (December 01, 2014)
    • 1230 PLANS PÉNINSULE DE LA GASPÉSIE
    • 1515A PAPINEAUVILLE À/TO OTTAWA
    • 1515B BECKETTS CREEK
    • 2250 BRUCE MINES TO/À SUGAR ISLAND
    • 3443 THETIS ISLAND TO/À NANAIMO
    • 3447 NANAIMO HARBOUR AND/ET DEPARTURE BAY
    • 3456 HALIBUT BANK TO/À BALLENAS CHANNEL
    • 3902 HECATE STRAIT
    • 3927 BONILLA ISLAND TO/À EDYE PASSAGE
    • 3934 APPROACHES TO/APPROACHES À SMITH SOUND AND/ET RIVERS INLET
    • 3956 MALACCA PASSAGE TO/À BELL PASSAGE
    • 3957 APPROACHES TO/APPROCHES À PRINCE RUPERT HARBOUR
    • 4023 NORTHUMBERLAND STRAIT / DÉTROIT DE NORTHUMBERLAND
    • 4049 GRAND BANK NORTHERN PORTION/GRAND BANC PARTIE NORD TO\À FLEMISH PASS/PAS
    • 4202 HALIFAX HARBOUR POINT PLEASANT TO/À BEDFORD BASIN
    • 4335 STRAIT OF CANSO AND APPROACHES/ET LES APPROCHES
    • 4416 HAVRE DE GASPÉ
    • 4448 PORT HOOD
    • 4462 ST. GEORGE'S BAY
    • 4522 TILT COVE AND/ET LA SCIE HARBOUR (APPROACHES TO/APPROCHES À LA SCIE HARBOUR
    • 4644 BAY D'ESPOIR AND/ET HERMITAGE BAY
    • 4653 BAY OF ISLANDS
    • 4827 HARE BAY TO / À FORTUNE HEAD
    • 4850 CAPE ST FRANCIS TO / À BACCALIEU ISLAND AND / ET HEART'S CONTENT
    • 4905 CAPE TORMENTINE À/TO WEST POINT
    • 4909 BUCTOUCHE HARBOUR
    • 4921 PLANS-BAIE DES CHALEURS / CHALEUR BAY - CÔTE NORD / NORTH SHORE
    • 5033 HAWKE BAY AND/ET SQUASHNO RUN
    • 6242A WINNIPEG TO/À SELKIRK
    • 6242B SELKIRK TO LAKE WINNIPEG/SELKIRK AU LAC WINNIPEG
    • 6267 GRINDSTONE POINT TO BERENS RIVER
    • 6358 NORTHWEST POINT TO / À JONES POINT   NEW
    • 6359 JONES POINT TO / À BURNT POINT   NEW
    • 6360 WINDY POINT TO / À SLAVE POINT   NEW
      So 696 charts (1680 including sub-charts) are available in the Canada CHS layer. (see coverage)

      Note : don't forget to visit 'Notices to Mariners' published monthly and available from the Canadian Coast Guard both online or through a free hardcopy subscription service.
      This essential publication provides the latest information on changes to the aids to navigation system, as well as updates from CHS regarding CHS charts and publications.
      See also written Notices to Shipping and Navarea warnings : NOTSHIP

      Ocean gravity

      Ocean Gravity is a short film with Guillaume Néry and Julie Gautier, 
      freedivers that rewrite the rules of the underwater world
      and takes us this time into the world of the weightlessness. 

      On their website, Néry says about this film:
      my diving has always propelled my imagination to the fantasy of space conquest.
      To touch the sea floor or to set foot on an unexplored planet, here are two fascinating adventures which feed my thirst of the unknown.

       Passe de Tiputa (Rangiroa, Tuamutu) with the Marine GeoGarage

      The discovery of this quite unique place, the Tiputa Pass, made it possible to put the visual closeness of two universes – water and air, ocean and space – into film 

      Links :